Reichweite der Uran-Vorräte der Welt

Erstellt für Greenpeace Deutschland

Autor: Peter Diehl

Berlin, Januar 2006
Inhalt

A. Uran-Vorräte .. 5
 1. Primäre Vorräte (d.h. in Lagerstätten) 5
 a. Übersicht .. 5
 b. Marginale Uran-Lagerstätten 12
 Nebenmineral zu Gold 12
 Nebenmineral zu Kupfer 12
 Nebenmineral zu Phosphat 12
 Schwarzschiefer 13
 Uran in Meerwasser 13
 2. Sekundäre Vorräte (d.h. andere Vorräte als in geologischen Lagerstätten) 14
 a. Uran-Gewinnung aus alten tailings 14
 b. Wiederaufarbeitungsuran (RepU) 14
 c. Gestrecktes HEU 15
 d. Uran aus Lagerbeständen von LEU, Unat 18
 e. Uran aus Wiederaufarbeitung von abgereichertem Uran 18
 3. Ersatz von Uran .. 21
 a. Plutonium (MOX-Brennstoff) 21
 b. Thorium .. 23
 4. Kombinierte Daten der Uran-Vorräte 23
 5. Einflussfaktoren auf die Uran-Vorräte 23
 Ausbeute beim Bergbau von Abbautechnologie abhängig 24
 Uran-Angebot steigt mit dem Preis 24
 Die Gewinnung von Uran als Nebenprodukt ist abhängig von der des Hauptprodukts 24
 Neue Uran-Vorräte können durch Exploration gefunden werden 24
 Politische Opposition gegen neue Uran-Bergwerke 24
 Auswirkung von Anreicherungskosten und tails assay 25
 Politische Opposition gegen MOX-Brennstoff .. 25
 Verfügbarkeit von HEU unterliegt politischen Entscheidungen 25
 Verfügbarkeit von überschüssigen Anreicherungskapazitäten für die Wiederaufarbeitung von tails .. 25
 Unsicherheit über Lagerbestände 26

B. Auswirkungen des Uran-Bergbaus auf die Umwelt .. 27
 1. Übersicht über die Umweltauswirkungen 27
 a. Uran-Bergwerke .. 27
 b. Abfallgestein ... 28
 c. Haldenlauung .. 28
 d. Lösungsbergbau (in-situ leaching) 28
 e. Aufbereitung des Erzes 29
 f. Deponien für Uranerz-Aufbereitungsrückstände (tailings) 30
 Eigenschaften der Uranerz-Aufbereitungsrückstände 30
 Gefahrenpotential von Uranerz-Aufbereitungsrückständen 31
 2. Sanierung von Uran-Bergwerken 33
 Bergwerke und Abfallgestein 33
 In-situ leaching .. 33
 Uranerz-Aufbereitungsrückstände 33
 Sanierungskosten .. 35
 3. Typische Fallbeispiele früherer Uran-Bergbaus 35
 4. Typische Fallbeispiele von aktiven Uran-Bergwerken 36
C. Bestehende und geplante technische Kapazitäten

1. Uran-Bergbau
 a. Übersicht
 b. Aktuelle Entwicklungen
 Konventioneller Bergbau - d.h. Bergbau untertage und im Tagebau
 In-situ leach (ISL) Produktion
2. Konversion zu UF6
3. Anreicherung
4. Herstellung von Nuklearbrennstoff
5. Kombinierte Daten zu Kapazitäten
6. Einflussfaktoren auf Produktionskapazitäten
 Risiken aufgrund der Abhängigkeit von einer kleinen Zahl großer Produzenten
 Risiken aufgrund des hohen Anteils sekundärer Quellen
 Auslaufen der sekundären Quellen erfordert Erhöhung der primären Produktion
 Lange Vorlaufzeiten für die Inbetriebnahme neuer Bergwerke
 Neue Kapazitäten sind überwiegend nur auf Armeerzlagerstätten möglich

D. Uran-Angebot und Nachfrage

1. Uran-Lieferanten
2. Uran-Abnehmer
3. Uran-Handel
4. Nachfrageszenarien
 Höherer Brennstoffabbrand
 Ausstieg aus der Atomenergienutzung in Schweden und Deutschland
 Pläne für eine Erweiterung der Atomenergienutzung in China
 Schnelle Brutreaktoren?
5. Ungleichgewichte der Uran-Vorräte
6. Ungleichgewichte zwischen Angebot und Nachfrage
7. Handselsbeschränkungen
 a. Exportbeschränkungen
 ... verhindern den Uran-Export von Australien nach China
 ... zwingen Indien, marginale Lagerstätten abzubauen
 b. Importbeschränkungen
8. Uran-Preis

E. Schlussfolgerungen
 Bekannte Uran-Vorräte können steigenden Bedarf nicht decken
 Uran-Bergbau-Kapazitäten reichen nicht aus
 Zunahme der Umweltfolgen
 Regionale Ungleichgewichte bei Angebot und Nachfrage
 Steigende Kosten
 Vorgeschlagene Alternativen hochproblematisch

F. Glossar

1. Begriffe und Abkürzungen
2. Umrechnungsfaktoren

G. Literatur
Zusammenfassung
Dieser Bericht stellt die zugänglichen Informationen über die aktuelle Situation zu Vorräten, Angebot und Nachfrage von Uran zusammen und analysiert Faktoren, die das Gleichgewicht von Angebot und Nachfrage beeinflussen. Er stellt für verschiedene Szenarien Schätzungen über die mögliche Reichweite der bekannten Uran-Vorräte vor und beleuchtet die Umweltauswirkungen solcher Szenarien.

Der Bericht kommt zu dem Schluss, dass die bekannten Uran-Vorräte nur einen nahezu gleichbleibenden Bedarf decken können, der nach 2040 wegen eines weltweiten Ausstiegs aus der Atomenergie zurückgeht. Jeglicher deutliche Anstieg der Nachfrage würde zu einer vorzeitigen Erschöpfung der bekannten Vorräte führen und den Abbau von immer ärmeren Lagerstätten erfordern, was zu steigenden Umweltbelastungen führen würde. Insbesondere reichen die bekannten Uran-Vorräte keinesfalls aus, um alle fossilen Brennstoffe in der Stromerzeugung zu ersetzen.

Einleitung
Nach dem Zweiten Weltkrieg wurde Uran zunächst als strategisch wichtiger Rohstoff abgebaut. Man unternahm riesige Anstrengungen, um an dieses Ausgangsmaterial für die Atombombe heranzukommen, ohne Rücksicht auf die Kosten und anfangs auch, ohne Rücksicht auf die Gesundheit der beteiligten Arbeiter oder die Umwelt zu nehmen. Die USA erhielten ihr Uran aus verschiedenen Quellen, vorwiegend aus heimischen und kanadischen Lagerstätten. Die Sowjetunion hatte zunächst kaum Kenntnisse über Lagerstätten im eigenen Land und baute daher eine riesige Uran-Bergbauindustrie in ihren europäischen Satellitenstaaten auf; insbesondere in Ostdeutschland und der Tschechoslowakei, aber auch in Ungarn und Bulgarien. Es gab Zeiten, in denen über 100.000 Menschen unter harten Bedingungen bei der Wismut so viel Uran abbauten, wie ihn heute wenige hundert Menschen in einer der kanadischen Reicherzlagerstätten zutage fördern.

Als Uran in den siebziger Jahren immer mehr zu einem kommerziellen Rohstoff wurde, begann sich die Situation zu ändern. Aber erst das Ende des Kalten Krieges im Jahr 1989 brachte das Ende für die riesigen Uran-Bergwerke, die in Europa immer noch für die Sowjetunion arbeiteten. Da keine Rückstellungen gemacht worden waren, mussten die jeweiligen Regierungen die Verantwortung für die Stilllegung und Sanierung der Hinterlassenschaften übernehmen, eine Aufgabe, die noch im Gange ist, bei der aber in der Zwischenzeit schon beachtliche Fortschritte erzielt worden sind.

Mit dem absehbaren Ende der sekundären Vorräte und angesichts der Vorschläge zum Ausbau der Stromerzeugung aus Atomenergie in verschiedenen Ländern, verändert sich die Situation erneut: Uran konnte wieder ein knapper Rohstoff werden. Der kürzlich zu beobachtende scharfe Anstieg des Uranpreises auf dem Spotmark zeigt, wie ernst man solche Befürchtungen nehmen muss.
A. Uran-Vorräte

1. Primäre Vorräte (d.h. in Lagerstätten)

a. Übersicht

Die Erdkruste enthält Uran in einer durchschnittlichen Konzentration von drei Gramm pro Tonne (0,0003%). Höhere Konzentrationen haben sich in vielen Lagerstätten in verschiedenen Teilen der Welt angesammelt. Diese Lagerstätten zeigen große Unterschiede in geologischer Situation, Größe, Uran-Konzentration und Eignung zum Abbau.

Uran-Lagerstätten werden allgemein in Kategorien entsprechend der Zuverlässigkeit eingeteilt, mit der ihr Uran-Inhalt bekannt ist (reasonably assured resources - RAR, estimated additional resources category I und II - EAR I / EAR II und speculative resources - SR) und entsprechend der erwarteten Abbaukosten (bis zu 40, 80 und 130 US$ pro kg U) (siehe Tab. 1 und Abb. 1 - Abb. 3).

Ein erster Blick auf die Weltkarte in Abb. 1 scheint eine ziemlich gleichmäßige Verteilung der Uran-Vorräte über die Welt anzuzeigen - anders als bei vielen anderen Rohstoffen. Es wird jedoch auch deutlich, dass nur wenige Länder über den Löwenanteil an den bekannten Uran-Vorräten verfügen, vor allem, wenn man die Vorräte betrachtet, die zu niedrigen Kosten abbaubar sind.

Da die in Tab. 1 benutzten Kategorien die Lagerstätten und insbesondere die Umweltauswirkungen ihres Abbaus nur ziemlich unzureichend beschreiben, wird hier der Versuch unternommen, die Uran-Konzentration in den Lagerstätten als Indikator zu benutzen. Während die Uran-Konzentrationen der derzeit abgebauten Lagerstätten den Bereich von 0,029% bis 17,96% Uran umfasst (das ist eine Spanne von 1:600!), umfassen die Kategorien für die Abbaukosten gerade einmal eine Spanne von etwas über 1:3. Die Uran-Konzentration im Erz korreliert zwar nicht direkt mit den Umweltfolgen des Abbaus, sie gibt aber doch einen guten Hinweis auf die Größe des nötigen Bergwerks und – bei konventionellen Bergwerken – auf die Größe der zugehörigen Deponien mit den Uranerz-Aufbereitungsrückständen.

Tab. 2 listet die bedeutenderen Uran-Lagerstätten auf, für die die Uran-Konzentration bzw. der gesamte Uran-Inhalt in [WUP HP] aufgeführt sind. Die angeführten Zahlen sind jedoch aus einer ganzen Reihe von Gründen nicht besonders zuverlässig: Zum einen gibt es unterschiedliche Methoden, den Gesamt-Uran-Inhalt und die Uran-Konzentration einer Lagerstätte anzuzeigen, und es ist oft unklar, wie die Zahl zustande kam; außerdem sind einige Zahlen überholt, da der
Vorrat zu einem bestimmten Zeitpunkt angegeben wurde, sich inzwischen aber durch Abbau oder z.B. durch eine Neubewertung verändert hat. Immerhin können die zusammengestellten Zahlen aber einen ersten Hinweis geben.

Anmerkung: Die Uran-Konzentrationen sind in %U angegeben, während Bergbaufirmen dazu neigen, die eindrucksvollere Angabe in %U₃O₈ zu bevorzugen. Ein %U₃O₈ ist äquivalent zu 0,848% Uran. Außerdem sind die Vorräte in Tonnen Uran angegeben, während Bergbaufirmen gerne Angaben in lb U₂O₈ machen. Eine Mio. lbs U₂O₈ ist äquivalent zu 385 Tonnen Uran.

Zur leichteren Übersicht wurden die Uran-Konzentrationen in die folgenden gewählten Kategorien eingeteilt:

- **hoch (1% - 10%U):** Nur sehr wenige Lagerstätten fallen in diesen Bereich, wie z.B. McClean Lake und Midwest in Saskatchewan, Kanada.

- **gut (0,2 - 1%U):** Typische Lagerstätten in diesem Bereich sind Ranger und Jabiluka in Australien, Arlit und Akouta in Niger, und Lagoa Real in Brasilien.

- **mäßig (0,1 – 0,2%U):** Hunderte meist kleiner Lagerstätten in diesem Bereich waren lange Zeit die Hauptquelle für Uran in den USA, bevor der Uran-Markt Anfang der achtziger Jahre zusammenbrach: Einige davon werden in letzter Zeit nun wieder in Betrieb genommen. Daneben gibt es eine ganze Reihe größerer Lagerstätten in diesem Bereich in verschiedenen Teilen der Welt.

- **Niedrig (< 0,1%U):** Derzeit können Lagerstätten mit solchen niedrigen Uran-Gehalten nur bei Vorliegen besonderer Umstände wirtschaftlich abgebaut werden, wie z.B. einem riesigen Tagebaubetrieb im Falle von Rössing in Namibia. Oder es besteht die Möglichkeit, wie bei den kasachischen Lagerstätten, im Lösungsbergbauverfahren (in-situ leaching) zu arbeiten. Auch wenn Uran nur ein Nebenprodukt des Bergbaus ist, wie bei Olympic Dam in Australien und bei den südafrikanischen Lagerstätten, lohnt sich bei einem so geringen Uran-Gehalt der Abbau.

Die meisten der Lagerstätten, bei denen kein Uran-Gehalt angegeben ist, fallen vermutlich in die Kategorien „niedrig“ oder „mäßig“.

Abb. 4 fasst die Gesamtvorräte nach Uran-Gehalts-Kategorien zusammen. Es ist offensichtlich, dass fast drei Viertel der in Tab. 2 angeführten Vorräte in die Kategorien „niedrig“ oder „mäßig“ fallen.
Tab. 1: Primäre Uran-Vorräte der Welt, Stand 1.1.2003 [NEA 2004]

<table>
<thead>
<tr>
<th>Land</th>
<th>RAR < 40$/kgU</th>
<th>RAR < 80$/kgU</th>
<th>RAR < 130$/kgU</th>
<th>EAR I < 40$/kgU</th>
<th>EAR I < 80$/kgU</th>
<th>EAR I < 130$/kgU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algerien</td>
<td>NA</td>
<td>19500</td>
<td>19500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Argentinien</td>
<td>4780</td>
<td>4880</td>
<td>7080</td>
<td>2860</td>
<td>2860</td>
<td>8560</td>
</tr>
<tr>
<td>Australien</td>
<td>669000</td>
<td>702000</td>
<td>735000</td>
<td>276000</td>
<td>287000</td>
<td>323000</td>
</tr>
<tr>
<td>Brasilien</td>
<td>26235</td>
<td>86190</td>
<td>86190</td>
<td>0</td>
<td>57140</td>
<td>57140</td>
</tr>
<tr>
<td>Bulgarien</td>
<td>1665</td>
<td>5870</td>
<td>5870</td>
<td>1650</td>
<td>6300</td>
<td>6300</td>
</tr>
<tr>
<td>Kanada</td>
<td>297264</td>
<td>333834</td>
<td>333834</td>
<td>86560</td>
<td>104710</td>
<td>104710</td>
</tr>
<tr>
<td>Zentr.Afr.Rep.</td>
<td>6000</td>
<td>12000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chile</td>
<td>0</td>
<td>560</td>
<td>NA</td>
<td>NA</td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>China, Festland</td>
<td>26235</td>
<td>NA</td>
<td>35060</td>
<td>5890</td>
<td>14690</td>
<td>14690</td>
</tr>
<tr>
<td>Kongo, DR</td>
<td>1350</td>
<td>1350</td>
<td>NA</td>
<td>1275</td>
<td>1275</td>
<td></td>
</tr>
<tr>
<td>Tschechien</td>
<td>0</td>
<td>830</td>
<td>830</td>
<td>0</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Dänemark</td>
<td>0</td>
<td>0</td>
<td>20250</td>
<td>0</td>
<td>12000</td>
<td></td>
</tr>
<tr>
<td>Finnland</td>
<td>0</td>
<td>0</td>
<td>1125</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frankreich</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9510</td>
</tr>
<tr>
<td>Gabun</td>
<td>0</td>
<td>0</td>
<td>4830</td>
<td>0</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Deutschland</td>
<td>0</td>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Griechenland</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>NA</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>Ungarn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13800</td>
</tr>
<tr>
<td>Indien</td>
<td>NA</td>
<td>40980</td>
<td>NA</td>
<td>NA</td>
<td>18935</td>
<td></td>
</tr>
<tr>
<td>Indonesien</td>
<td>0</td>
<td>320</td>
<td>4620</td>
<td>0</td>
<td>1155</td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>0</td>
<td>0</td>
<td>370</td>
<td>0</td>
<td>0</td>
<td>700</td>
</tr>
<tr>
<td>Italien</td>
<td>4800</td>
<td>4800</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>6600</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kasachstan</td>
<td>280620</td>
<td>384625</td>
<td>530480</td>
<td>131220</td>
<td>237780</td>
<td>317160</td>
</tr>
<tr>
<td>Malawi</td>
<td>NA</td>
<td>8775</td>
<td>8775</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mexiko</td>
<td>0</td>
<td>0</td>
<td>1275</td>
<td>0</td>
<td>0</td>
<td>525</td>
</tr>
<tr>
<td>Mongolei</td>
<td>7950</td>
<td>46200</td>
<td>46200</td>
<td>8250</td>
<td>15750</td>
<td>15750</td>
</tr>
<tr>
<td>Namibia</td>
<td>57262</td>
<td>139297</td>
<td>170532</td>
<td>57142</td>
<td>73560</td>
<td>87085</td>
</tr>
<tr>
<td>Niger</td>
<td>89800</td>
<td>102227</td>
<td>102227</td>
<td>125377</td>
<td>125377</td>
<td>125377</td>
</tr>
<tr>
<td>Peru</td>
<td>NA</td>
<td>1215</td>
<td>1215</td>
<td>NA</td>
<td>1265</td>
<td>1265</td>
</tr>
<tr>
<td>Portugal</td>
<td>NA</td>
<td>7470</td>
<td>7470</td>
<td>NA</td>
<td>1450</td>
<td>1450</td>
</tr>
<tr>
<td>Rumänien</td>
<td>0</td>
<td>0</td>
<td>3325</td>
<td>0</td>
<td>3608</td>
<td></td>
</tr>
<tr>
<td>Rußland</td>
<td>52610</td>
<td>124050</td>
<td>143020</td>
<td>15860</td>
<td>34260</td>
<td>121220</td>
</tr>
<tr>
<td>Slowenien</td>
<td>0</td>
<td>2200</td>
<td>2200</td>
<td>0</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>Somalia</td>
<td>0</td>
<td>0</td>
<td>4950</td>
<td>0</td>
<td>0</td>
<td>2550</td>
</tr>
<tr>
<td>Südafrika</td>
<td>119184</td>
<td>231664</td>
<td>315330</td>
<td>49313</td>
<td>66940</td>
<td>80340</td>
</tr>
<tr>
<td>Spanien</td>
<td>0</td>
<td>2460</td>
<td>4925</td>
<td>0</td>
<td>6380</td>
<td></td>
</tr>
<tr>
<td>Schweden</td>
<td>0</td>
<td>0</td>
<td>4000</td>
<td>0</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Türkei</td>
<td>0</td>
<td>6845</td>
<td>6845</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ukraine</td>
<td>15380</td>
<td>34630</td>
<td>64630</td>
<td>900</td>
<td>4735</td>
<td>11410</td>
</tr>
<tr>
<td>USA</td>
<td>NA</td>
<td>102000</td>
<td>349000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Usbekistan</td>
<td>61510</td>
<td>61510</td>
<td>79620</td>
<td>31760</td>
<td>31760</td>
<td>38840</td>
</tr>
<tr>
<td>Vietnam</td>
<td>NA</td>
<td>NA</td>
<td>1005</td>
<td>NA</td>
<td>820</td>
<td>5435</td>
</tr>
<tr>
<td>Simbabwe</td>
<td>1350</td>
<td>1350</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Welt gesamt</td>
<td>1730495</td>
<td>2458152</td>
<td>3169238</td>
<td>792782</td>
<td>1078762</td>
<td>1419450</td>
</tr>
</tbody>
</table>

RAR = Reasonably Assured Resources, EAR I = Estimated Additional Resources - Category I
RAR + EAR I = bekannte Vorräte, NA = Nicht verfügbar

Anmerkung: Die Spalte “< 130$/kgU” enthält auch Vorräte, die keiner Kostenkategorie zugewiesen wurden.
Vorräte in Schwarzschiefer oder Phosphatvorkommen sind nicht berücksichtigt.
Abb. 1: Weltkarte der Reasonably Assured Resources

World Uranium Resources (RAR - $80/kg U)

[t U] Reasonably Assured Resources as of 1/1/2003, Cost range US$80/kg U or less (OECD 2004)

World Total = 2458152 t

Abb. 2: Reasonably Assured Resources nach Ländern

Reasonably Assured Resources (RAR) am 1.1.2003 [t U]

- < 40 $/kgU
- 40 - 80 $/kgU
- 80 - 130 $/kgU

Australien
Kasachstan
USA
Kanada
Südafrika
Namibia
Rußland
Niger
Brasilien
Usbekistan
Ukraine
Mongolei
Indien
China, Festl.
Dänemark
Algerien
Zentr. Afrik.
Argentinien
Bulgarien
Spanien
Schweden
Slowenien
Ungarn
Andere
Abb. 3: Bekannte Vorräte nach Ländern

Bekannte Vorräte (RAR + EAR I) am 1.1.2003 [t U]

Abb. 4: Uran-Vorräte nach Uran-Konzentration, für ausgewählte Lagerstätten

Uranvorräte [t U] nach Urankonzentration [% U]
<table>
<thead>
<tr>
<th>Lagerstätte</th>
<th>Land</th>
<th>Bergwerks-Typ</th>
<th>Status</th>
<th>Urankoncentration [%U]</th>
<th>Inhalt [t U]</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>McArthur River</td>
<td>Kanada</td>
<td>UG</td>
<td>O</td>
<td>sehr hoch</td>
<td>17.96%</td>
<td>151883</td>
</tr>
<tr>
<td>Cigar Lake</td>
<td>Kanada</td>
<td>UG</td>
<td>P</td>
<td>hoch</td>
<td>13.70%</td>
<td>127627</td>
</tr>
<tr>
<td>Midwest</td>
<td>Kanada</td>
<td>UG</td>
<td>P</td>
<td>hoch</td>
<td>3.80%</td>
<td>13200</td>
</tr>
<tr>
<td>McClean Lake</td>
<td>Kanada</td>
<td>OP, UG</td>
<td>O</td>
<td>hoch</td>
<td>2.00%</td>
<td>19300</td>
</tr>
<tr>
<td>Dawn Lake</td>
<td>Kanada</td>
<td></td>
<td></td>
<td></td>
<td>1.51%</td>
<td>8585</td>
</tr>
<tr>
<td>Rabbit Lake</td>
<td>Kanada</td>
<td></td>
<td></td>
<td></td>
<td>1.10%</td>
<td>11511</td>
</tr>
<tr>
<td>Koongarra</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.68%</td>
<td>12330</td>
</tr>
<tr>
<td>Jabiluka</td>
<td>Australien</td>
<td>UG</td>
<td>O</td>
<td></td>
<td>0.43%</td>
<td>60208</td>
</tr>
<tr>
<td>Baker Lake</td>
<td>Kanada</td>
<td></td>
<td></td>
<td></td>
<td>0.41%</td>
<td>15084</td>
</tr>
<tr>
<td>Akouta</td>
<td>Niger</td>
<td>UG</td>
<td>O</td>
<td></td>
<td>0.38%</td>
<td>29000</td>
</tr>
<tr>
<td>Cerro Solo</td>
<td>Argentinien</td>
<td></td>
<td></td>
<td></td>
<td>0.35%</td>
<td>2200</td>
</tr>
<tr>
<td>Arlit</td>
<td>Niger</td>
<td>OP</td>
<td>O</td>
<td></td>
<td>0.3%</td>
<td>14000</td>
</tr>
<tr>
<td>Roco Honda</td>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td>0.26%</td>
<td>4600</td>
</tr>
<tr>
<td>Kintyre</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.26%</td>
<td>30000</td>
</tr>
<tr>
<td>Lagoa Real</td>
<td>Brasilien</td>
<td></td>
<td></td>
<td></td>
<td>0.25%</td>
<td>79712</td>
</tr>
<tr>
<td>Ranger</td>
<td>Australien</td>
<td>OP</td>
<td>O</td>
<td></td>
<td>0.24%</td>
<td>51300</td>
</tr>
<tr>
<td>Sheep Mountain</td>
<td>USA</td>
<td></td>
<td>P</td>
<td>gut</td>
<td>0.21%</td>
<td>3080</td>
</tr>
<tr>
<td>Ben Lomond</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.21%</td>
<td>4000</td>
</tr>
<tr>
<td>Mardain Gol</td>
<td>Mongolei</td>
<td></td>
<td></td>
<td></td>
<td>0.19%</td>
<td>1005</td>
</tr>
<tr>
<td>Sierra Pintada</td>
<td>Argentinien</td>
<td></td>
<td></td>
<td></td>
<td>0.19%</td>
<td>2440</td>
</tr>
<tr>
<td>Domod</td>
<td>Mongolei</td>
<td></td>
<td></td>
<td></td>
<td>0.18%</td>
<td>20000</td>
</tr>
<tr>
<td>Krasnokamensk</td>
<td>Rußland</td>
<td>UG</td>
<td>O</td>
<td>mäßig</td>
<td>0.18%</td>
<td>170000</td>
</tr>
<tr>
<td>Beverley</td>
<td>Australien</td>
<td>ISL</td>
<td>O</td>
<td></td>
<td>0.15%</td>
<td>17800</td>
</tr>
<tr>
<td>Kayelekera</td>
<td>Malawi</td>
<td></td>
<td></td>
<td></td>
<td>0.16%</td>
<td>9920</td>
</tr>
<tr>
<td>Gurvanbulag</td>
<td>Mongolei</td>
<td></td>
<td></td>
<td></td>
<td>0.15%</td>
<td>16040</td>
</tr>
<tr>
<td>Nemer</td>
<td>Mongolei</td>
<td></td>
<td></td>
<td></td>
<td>0.15%</td>
<td>2528</td>
</tr>
<tr>
<td>Yeelirrie</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.13%</td>
<td>44100</td>
</tr>
<tr>
<td>Aldansky</td>
<td>Rußland</td>
<td>UG</td>
<td>O</td>
<td></td>
<td>0.13%</td>
<td>200000</td>
</tr>
<tr>
<td>Nose Rock</td>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td>0.12%</td>
<td>5624</td>
</tr>
<tr>
<td>Valhalla</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.12%</td>
<td>14000</td>
</tr>
<tr>
<td>Angela</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.11%</td>
<td>9752</td>
</tr>
<tr>
<td>Michelin</td>
<td>Kanada</td>
<td></td>
<td></td>
<td></td>
<td>0.11%</td>
<td>7000</td>
</tr>
<tr>
<td>Imouraren</td>
<td>Niger</td>
<td></td>
<td></td>
<td></td>
<td>0.11%</td>
<td>80000</td>
</tr>
<tr>
<td>Nisa</td>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td>0.11%</td>
<td>1923</td>
</tr>
<tr>
<td>Skal</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.11%</td>
<td>2923</td>
</tr>
<tr>
<td>Frank M</td>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td>0.10%</td>
<td>1350</td>
</tr>
<tr>
<td>Maureen</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.10%</td>
<td>2544</td>
</tr>
<tr>
<td>Macusani</td>
<td>Peru</td>
<td></td>
<td></td>
<td></td>
<td>0.10%</td>
<td>1790</td>
</tr>
<tr>
<td>Oobagooma</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.10%</td>
<td>8438</td>
</tr>
<tr>
<td>Mulga Rock</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.10%</td>
<td>13000</td>
</tr>
<tr>
<td>Manyinge</td>
<td>Australien</td>
<td>ISL</td>
<td>O</td>
<td></td>
<td>0.10%</td>
<td>6665</td>
</tr>
<tr>
<td>Goulds Dam</td>
<td>Australien</td>
<td>ISL</td>
<td>O</td>
<td></td>
<td>0.10%</td>
<td>1696</td>
</tr>
<tr>
<td>Honeymoon</td>
<td>Australien</td>
<td>ISL</td>
<td>O</td>
<td></td>
<td>0.10%</td>
<td>2798</td>
</tr>
<tr>
<td>Westmoreland</td>
<td>Australien</td>
<td></td>
<td></td>
<td></td>
<td>0.10%</td>
<td>17300</td>
</tr>
<tr>
<td>Ingulisk’i</td>
<td>Ukraine</td>
<td>UG</td>
<td>O</td>
<td></td>
<td>0.10%</td>
<td>27000</td>
</tr>
<tr>
<td>Karkhu</td>
<td>Rußland</td>
<td></td>
<td></td>
<td></td>
<td>0.10%</td>
<td>7000</td>
</tr>
<tr>
<td>Severinskoye</td>
<td>Ukraine</td>
<td></td>
<td></td>
<td></td>
<td>0.10%</td>
<td>50000</td>
</tr>
<tr>
<td>Zarechnoye</td>
<td>Kasachstan</td>
<td>ISL</td>
<td>P</td>
<td></td>
<td>0.10%</td>
<td>14500</td>
</tr>
<tr>
<td>Lagerstätte</td>
<td>Land</td>
<td>Bergw.-Typ</td>
<td>Status</td>
<td>Urankonzentration [%U]</td>
<td>Inhalt [t U]</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Workman Creek</td>
<td>USA</td>
<td></td>
<td></td>
<td>0.093%</td>
<td>3773</td>
<td></td>
</tr>
<tr>
<td>Langer Heinrich</td>
<td>Namibia</td>
<td>OP</td>
<td>P</td>
<td>0.093%</td>
<td>9459</td>
<td></td>
</tr>
<tr>
<td>Hansen</td>
<td>USA</td>
<td>ISL</td>
<td></td>
<td>0.083%</td>
<td>10654</td>
<td></td>
</tr>
<tr>
<td>Smith Ranch</td>
<td>USA</td>
<td></td>
<td>O</td>
<td>0.085%</td>
<td>12500</td>
<td></td>
</tr>
<tr>
<td>Domiasiat</td>
<td>Indien</td>
<td></td>
<td>P</td>
<td>0.085%</td>
<td>7619</td>
<td></td>
</tr>
<tr>
<td>Dieter Lake</td>
<td>Kanada</td>
<td>ISL</td>
<td></td>
<td>0.085%</td>
<td>42300</td>
<td></td>
</tr>
<tr>
<td>Reno Creek</td>
<td>USA</td>
<td>ISL</td>
<td></td>
<td>0.063%</td>
<td>2271</td>
<td></td>
</tr>
<tr>
<td>Antelope</td>
<td>USA</td>
<td></td>
<td></td>
<td>0.060%</td>
<td>5770</td>
<td></td>
</tr>
<tr>
<td>Saelices el Chico</td>
<td>Spanien</td>
<td></td>
<td></td>
<td>0.060%</td>
<td>8500</td>
<td></td>
</tr>
<tr>
<td>Olympic Dam</td>
<td>Australien</td>
<td>UG, BP</td>
<td>O</td>
<td>niedrig</td>
<td>302000</td>
<td></td>
</tr>
<tr>
<td>Vitimsky</td>
<td>Rußland</td>
<td>ISL</td>
<td>P</td>
<td>0.051%</td>
<td>15500</td>
<td></td>
</tr>
<tr>
<td>Nowthanna</td>
<td>Australien</td>
<td></td>
<td></td>
<td>0.046%</td>
<td>2317</td>
<td></td>
</tr>
<tr>
<td>Lambapur Pedagatt</td>
<td>Indien</td>
<td></td>
<td>P</td>
<td>0.044%</td>
<td>5900</td>
<td></td>
</tr>
<tr>
<td>Lake Maitland</td>
<td>Australien</td>
<td></td>
<td></td>
<td>0.043%</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Aurora</td>
<td>USA</td>
<td></td>
<td></td>
<td>0.042%</td>
<td>6359</td>
<td></td>
</tr>
<tr>
<td>Jaduguda</td>
<td>Indien</td>
<td>UG</td>
<td>O</td>
<td>0.040%</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Inkay</td>
<td>Kasachstan</td>
<td></td>
<td></td>
<td>0.040%</td>
<td>35194</td>
<td></td>
</tr>
<tr>
<td>Rietkuil</td>
<td>Südafrika</td>
<td>BP</td>
<td></td>
<td>0.037%</td>
<td>143000</td>
<td></td>
</tr>
<tr>
<td>Munkuduk</td>
<td>Kasachstan</td>
<td></td>
<td></td>
<td>0.035%</td>
<td>49000</td>
<td></td>
</tr>
<tr>
<td>Napperby</td>
<td>Australien</td>
<td></td>
<td></td>
<td>0.034%</td>
<td>5088</td>
<td></td>
</tr>
<tr>
<td>Rössing</td>
<td>Namibia</td>
<td>OP</td>
<td>O</td>
<td>0.029%</td>
<td>80730</td>
<td></td>
</tr>
<tr>
<td>Highland</td>
<td>USA</td>
<td>ISL</td>
<td>O</td>
<td>?</td>
<td>2810</td>
<td></td>
</tr>
<tr>
<td>Taylor Ranch</td>
<td>USA</td>
<td>ISL</td>
<td></td>
<td>?</td>
<td>3850</td>
<td></td>
</tr>
<tr>
<td>Ruby Ranch</td>
<td>USA</td>
<td>ISL</td>
<td></td>
<td>?</td>
<td>1848</td>
<td></td>
</tr>
<tr>
<td>Bear Creak</td>
<td>USA</td>
<td>ISL</td>
<td></td>
<td>?</td>
<td>1848</td>
<td></td>
</tr>
<tr>
<td>Peach</td>
<td>USA</td>
<td></td>
<td></td>
<td>?</td>
<td>1771</td>
<td></td>
</tr>
<tr>
<td>JAB</td>
<td>USA</td>
<td></td>
<td></td>
<td>?</td>
<td>1154</td>
<td></td>
</tr>
<tr>
<td>Gas Hills</td>
<td>USA</td>
<td>ISL</td>
<td>P</td>
<td>?</td>
<td>7007</td>
<td></td>
</tr>
<tr>
<td>Charlie</td>
<td>USA</td>
<td></td>
<td></td>
<td>?</td>
<td>1610</td>
<td></td>
</tr>
<tr>
<td>Vasquez</td>
<td>USA</td>
<td>ISL</td>
<td>O</td>
<td>?</td>
<td>1425</td>
<td></td>
</tr>
<tr>
<td>Dewey/Burdock</td>
<td>USA</td>
<td>ISL</td>
<td></td>
<td>?</td>
<td>2387</td>
<td></td>
</tr>
<tr>
<td>Ram Claim</td>
<td>USA</td>
<td></td>
<td></td>
<td>?</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td>Mt Taylor</td>
<td>USA</td>
<td></td>
<td></td>
<td>?</td>
<td>38500</td>
<td></td>
</tr>
<tr>
<td>Hosta Butte</td>
<td>USA</td>
<td>ISL</td>
<td>P</td>
<td>?</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Crownpoint</td>
<td>USA</td>
<td>ISL</td>
<td>P</td>
<td>?</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>Church Rock</td>
<td>USA</td>
<td>ISL</td>
<td>P</td>
<td>?</td>
<td>7350</td>
<td></td>
</tr>
<tr>
<td>Big Red</td>
<td>USA</td>
<td>ISL</td>
<td></td>
<td>?</td>
<td>2348</td>
<td></td>
</tr>
<tr>
<td>Crow Butte</td>
<td>USA</td>
<td>ISL</td>
<td>O</td>
<td>?</td>
<td>3465</td>
<td></td>
</tr>
<tr>
<td>Schwatzwalder</td>
<td>USA</td>
<td></td>
<td></td>
<td>?</td>
<td>6150</td>
<td></td>
</tr>
<tr>
<td>Itatia</td>
<td>Brasilien</td>
<td></td>
<td></td>
<td>?</td>
<td>77337</td>
<td></td>
</tr>
<tr>
<td>Vatutinski</td>
<td>Ukraine</td>
<td>UG</td>
<td>O</td>
<td>?</td>
<td>25500</td>
<td></td>
</tr>
<tr>
<td>Muyunkum</td>
<td>Kasachstan</td>
<td></td>
<td></td>
<td>?</td>
<td>43700</td>
<td></td>
</tr>
<tr>
<td>Gurvan Saihan</td>
<td>Mongolei</td>
<td></td>
<td></td>
<td>?</td>
<td>8701</td>
<td></td>
</tr>
<tr>
<td>Dalmatovkoye</td>
<td>Rußland</td>
<td>ISL</td>
<td>O</td>
<td>?</td>
<td>10200</td>
<td></td>
</tr>
<tr>
<td>Malinovskoye</td>
<td>Rußland</td>
<td>ISL</td>
<td></td>
<td>?</td>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

Gesamt

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Unbekannt</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>281261</td>
<td></td>
</tr>
</tbody>
</table>

BP = Nebenprodukt, ISL = in-situ leaching, OP = Tagebau, UG = unter Tage, O = in Betrieb, P = geplant
b. Marginale Uran-Lagerstätten

Es gibt verschiedene Typen von Uran-Lagerstätten, die unter den gegenwärtigen Bedingungen nicht wirtschaftlich abgebaut werden können, oder in denen das Uran nur als Nebenprodukt wirtschaftlich gewonnen werden kann. Unter veränderten wirtschaftlichen Bedingungen könnten jedoch auch solche Lagerstätten (wieder) Bedeutung erlangen.

- **Nebenmineral zu Gold**

- **Nebenmineral zu Kupfer**

 Olympic Dam, Australien: In dieser sehr großen Kupfer-Lagerstätte fällt Uran als Nebenprodukt an. Trotz der niedrigen Uran-Konzentration von 0,053% beträgt der Uran-Vorrat insgesamt 302.000 Tonnen Uran, wodurch es sich um die größte Uran-Lagerstätte der Welt handelt. Im Jahr 2004 trug Uran 21% zum Umsatz des Bergwerks bei (siehe Tab. 3). Kürzlich gemachte Vorschläge zur Kapazitätserweiterung würden die jährliche Produktion mehr als versiebenfachen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kupfer</td>
<td>224731 t Cu</td>
<td>2.5% Cu</td>
<td>1,30 US$/lb</td>
<td>644</td>
<td>74%</td>
</tr>
<tr>
<td>Uran</td>
<td>4404 t U₃O₈</td>
<td>0.042% U</td>
<td>18,65 US$/lb</td>
<td>181</td>
<td>21%</td>
</tr>
<tr>
<td>Silber</td>
<td>861628 Feinunzen</td>
<td>3.0 ppm Ag</td>
<td>6,65 US$/oz</td>
<td>6</td>
<td>1%</td>
</tr>
<tr>
<td>Gold</td>
<td>88633 Feinunzen</td>
<td>0.31 ppm Au</td>
<td>409 US$/oz</td>
<td>36</td>
<td>4%</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
<td>867</td>
<td>100%</td>
</tr>
</tbody>
</table>

Palabora, Südafrika: Dieses Kupferbergwerk hat von 1994 bis 2002 Uran als Nebenprodukt erzeugt. Wegen Unwirtschaftlichkeit ist die Anlage zur Uran-Abtrennung seither außer Betrieb.

Rakha, Surda und Mosaboni, Indien: Die Kupfererze im Singhbhum Thrust Belt im indischen Bundesstaat Jharkhand enthalten kleine Mengen an Uran-Mineralien, die als Nebenprodukt gewonnen werden. Die Aufbereitungsrückstände der Kupfergewinnung enthalten etwa 0,0085% Uran und werden in drei Uran-Abtrennungsanlagen in Rakha, Surda und Mosaboni verarbeitet. Das hier gewonnene Uran-Vorkonzentrat wird zur weiteren Verarbeitung zur Aufbereitungsanlage in das Uran-Bergwerk Jaduguda gebracht [IAEA 1997a].

- **Nebenmineral zu Phosphat**

Das weithin eingesetzte Schwefelsäure-Verfahren konzentriert das Uran im Produktstrom (Dünger, Detergentien usw.). Es gibt verschiedene Technologien zur Rückgewinnung des Urans aus dem Produktstrom, womit zum einen dieser unerwünschte Bestandteil nicht in die Produkte gelangt, und zum anderen eine alternative Quelle zur Uran-Gewinnung zur Verfügung steht. Weltweit gibt es etwa 400 Phosphorsäure-Anlagen, die mit dem Nassverfahren arbeiten. Im Prinzip könnten dort 11.000 Tonnen Uran jährlich gewonnen werden. [IAEA 2001a] geht von einer tatsächlich gewinnbaren Menge von 3.700 Tonnen Uran jährlich aus.

- **Schwarzschiefer**

Verschiedene Typen von marginalen Uran-Lagerstätten sind nicht in der Statistik der Uran-Vorräte in Tab. 1 enthalten. Die wichtigsten davon finden sich in Schwarzschiefern. Schwarzschiefer-Lagerstätten können 50 bis 400 ppm (0,005 – 0,04%) Uran enthalten. Wegen ihrer großen Ausdehnung gibt es hier sehr große Vorräte, wie Tab. 4 an einigen Beispielen zeigt.

“Schwarzschiefer-Lagerstätten beinhalten zwar große Vorräte, werden aber hohe Produktionskosten verursachen, und ihre Ausbeutung würde riesige Bergwerke, Aufbereitungsanlagen und Deponien für die Aufbereitungsmaterialien erfordern. Dies würde sicherlich Widerstände von Umweltschützern hervorroufen. Außerdem wird im Raum Ronneburg derzeit für mehrere Milliarden Dollar die Wismut-Sanierung durchgeführt. Daher stellen die Schwarzschiefer-Lagerstätten eine Langzeit-Reserve dar, die erst bei Uran-Preisen oberhalb von 130 US$/kg Uran wirtschaftlich interessant wird, allerdings nur unter der Annahme, dass der Widerstand von Umweltschützern überwunden werden könnte, was für keine der drei genannten Lagerstätten als sicher gelten kann” [IAEA 2001a].

Tab. 4: Beispiele von Schwarzschiefer-Lagerstätten [IAEA 2001a]

<table>
<thead>
<tr>
<th>Ort</th>
<th>Fläche [km²]</th>
<th>Uran-Vorrat [t U]</th>
<th>Uran-Konz. [ppm U]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ronneburg, Thüringen</td>
<td>164</td>
<td>169.230</td>
<td>850 – 1700</td>
</tr>
<tr>
<td>Ranstad, Schweden</td>
<td>500</td>
<td>254.000</td>
<td>170 – 250</td>
</tr>
<tr>
<td>Chattanooga Shale, USA</td>
<td>80.000</td>
<td>4 – 5 Mio.</td>
<td>57</td>
</tr>
</tbody>
</table>

- **Uran in Meerwasser**

2. Sekundäre Vorräte (d.h. andere Vorräte als in geologischen Lagerstätten)

a. Uran-Gewinnung aus alten tailings

b. Wiederaufarbeitungsuran (RepU)

Für das IAEA Szenario gemachte Annahme:

- Die Verwendung von RepU nimmt bis 2016 langsam zu, wonach sie dann bis 2050 bei 2500 Tonnen Uran jährlich stehen bleibt [IAEA 2002].

c. Gestrecktes HEU

<table>
<thead>
<tr>
<th>Militärisches HEU (93% äquiv.)</th>
<th>Ziviles HEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Gesamt)</td>
<td>(Überschuß)</td>
</tr>
<tr>
<td>Belgien</td>
<td>--</td>
</tr>
<tr>
<td>China</td>
<td>20 ± 5</td>
</tr>
<tr>
<td>Frankreich</td>
<td>30 ± 7</td>
</tr>
<tr>
<td>Deutschland</td>
<td>0.8</td>
</tr>
<tr>
<td>Indien</td>
<td>?</td>
</tr>
<tr>
<td>Israel</td>
<td>--</td>
</tr>
<tr>
<td>Japan</td>
<td>--</td>
</tr>
<tr>
<td>Nordkorea</td>
<td>?</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1-1.25</td>
</tr>
<tr>
<td>Südafrika</td>
<td>0.4-0.6</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>~21</td>
</tr>
<tr>
<td>USA</td>
<td>700 ± 50</td>
</tr>
<tr>
<td>UdSSR/Russland</td>
<td>1.070 ± 300</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1.840 ± 360</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEU-Gewinnung pro t HEU:

Strecken von 1 t HEU (93%) mit 27 t Unat ergibt 28 t LEU (4%), das 253 t Unat und 148.000 SWU ersetzen kann (siehe Abb. 5).

In Russland wird dieses Problem dadurch gelöst, dass eine Zumischkomponente mit einem U-235-Gehalt von 1,5% benutzt wird, die durch Wiederanreicherung von tails erzeugt wird. Dazu wird abgereichertes Uran mit überschüssigen Zentrifugen-Kapazitäten bis auf 1,5% angereichert. Diese Verfahrensweise erlaubt es Russland, seine Verpflichtungen aus dem U.S.-Russia HEU Agreement zu erfüllen, ohne seine knappen Vorräte an Natururan angreifen zu müssen.
In diesem Fall ergibt das Strecken von einer Tonne HEU (93%) mit 35,6 Tonnen Uran Zumischkomponente (1,5%) dann 36,6 Tonnen Uran (4%), wodurch 330 Tonnen Unat und 193,000 SWU ersetzt werden können. Die Zumischkomponente kann beispielsweise unter Aufwendung von 161,000 SWU aus 273 Tonnen Udep (0,3%) erzeugt werden oder unter Aufwendung von 232,000 SWU aus 415,3 Tonnen Udep (0,22%). Der letztere Fall (siehe Abb. 6) ist vermutlich der von Russland verfolgte, wie in [Diehl 2004] gezeigt wird. Es ist bemerkenswert, dass in diesem Fall für die Anreicherung der Zumischkomponente mehr SWU aufgewendet werden, als mit dem Strecken des HEU zurückgewonnen werden können.

Für das IAEA-Szenario gemachte Annahme:

d. Uran aus Lagerbeständen von LEU, Unat

Über die Lagerbestände in der Welt an niedrig angereichertem Uran (low enriched uranium) und Natururan (Unat) gibt es nur wenige Informationen (siehe Tab. 6). Das ist einer der Gründe dafür, warum eine so große Unsicherheit über die zukünftige Entwicklung des Uran-Markts herrscht.

<table>
<thead>
<tr>
<th>Land</th>
<th>als Unat Konzentrat</th>
<th>als angereichertes Uran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentinien</td>
<td>> 110</td>
<td>0</td>
</tr>
<tr>
<td>Brasilien</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Tschechien</td>
<td>> 2000</td>
<td>NA</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>1100</td>
<td>2100</td>
</tr>
<tr>
<td>Litauen</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Mexiko</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>Portugal</td>
<td>286</td>
<td>0</td>
</tr>
<tr>
<td>Spanien</td>
<td>NA</td>
<td>> 380</td>
</tr>
<tr>
<td>Türkei</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>USA</td>
<td>37845</td>
<td>20820</td>
</tr>
<tr>
<td>Gesamt</td>
<td>> 41663</td>
<td>> 23440</td>
</tr>
</tbody>
</table>

(nur die Länder angeführt, für die von Null verschiedene Zahlen verfügbar sind)

NA = nicht verfügbar oder nicht bekannt gegeben

Für das IAEA-Szenario gemachte Annahmen:

- Russische Bestände: Die Entnahme aus den Beständen an russischem Natururan und niedrig angereichertem Uran wird abhängig von den HEU-Lieferungen schwanken. Da der Beitrag aus HEU zunimmt, wird die Lagerentnahme ständig abnehmen, bis sie 2014 zum Stillstand kommt, nachdem sie einen kumulierten Beitrag von 47.000 Tonnen Uran geleistet hat [IAEA 2002].

e. Uran aus Wiederanreicherung von abgereichertem Uran

Seit 1996 wird abgereichertes Uran (depleted uranium oder tails) der westeuropäischen Anreicherungsfirmen Urenco und Eurodif zur Wiederanreicherung nach Russland geschickt. Dort werden die tails statt Natururan in überschüssige Anreicherungskaskaden der russischen Atomennergiebehörde Rosatom (ehemals Minatom) eingespeist. Das Endprodukt der Wiederanreicherung ist überwiegend naturäquivalentes Uran, dazu etwas reaktortaugliches niedrig-angereichertes Uran (LEU). Diese Produkte werden an Urenco und Eurodif

1) Die Wiederanreicherungs-Geschäfte zwischen Urenco/Eurodif und Rosatom:
 - Urenco und Eurodif schicken jeweils 7.000 Tonnen Uran in tails pro Jahr zur Anreicherung nach Russland. Urencos tails haben einen U-235-Gehalt von 0,3%, Eurodifs einen von 0,35%.
 - Rosatom wendet insgesamt 2,58 Mio. SWU für diese Wiederanreicherung im Auftrag von Urenco and Eurodif auf. Rosatom berechnet nicht den Marktpreis für die aufgewandten SWU, sondern vermutlich nur die Betriebskosten in Höhe von US$20 pro SWU.
 - Urenco und Eurodif erhalten jeweils 1.100 Tonnen wiederangereichertes naturäquivalentes Uran (Uneq) als UF₆ zurück. Etwa die Hälfte der von Urenco und Eurodif zurückerhaltenen Gesamtmenge an wiederangereichertem naturäquivalentem Uran von 2.200 Tonnen wird von Stromversorgern in der EU verbraucht, der Rest wird exportiert. Eurodif erhält außerdem 130 Tonnen Uran als UF₆ auf 3,5% angereichertes Uran.

2) Die sekundären tails aus dem Geschäft mit Urenco/Eurodif werden von Rosatom auf eigene Rechnung weiter wiederauferneichert:
 - Rosatom reichert sie bis auf einen U-235-Gehalt von 0,1% ab.
 - Rosatom erhält auf diese Weise weitere 3.300 Tonnen Uran (wahrscheinlich aber nur 2.231 Tonnen Uran) wiederangereichertes naturäquivalentes Uran pro Jahr, die es selber verbrauchen oder auf eigene Rechnung verkaufen kann. Rosatom verwendet zumindest einen Teil dieses Materials für die Herstellung der Zumischkomponente (1,5% U-235) für das Strecken von HEU (siehe S. 15).

Die resultierenden Massenbilanzen sind in Abb. 7 für Urencos tails und in Abb. 8 für Eurodif tails gezeigt. Rosatom reichert weiterhin auch noch tails aus seinen eigenen DU-Beständen wieder an.

Urenco geht davon aus, dass das Wiederanreicherungs-Abkommen mit Russland nach 2010 endet [HSE 2004].

Für das IAEA Szenario gemachte Annahme:
Abb. 7: Jährliche Massenbilanz für die Wiederanreicherung von Urencos tails [Diehl 2004]

Unat Ausgangsmaterial
7993 t Unat (0,71%)

DU Abfall / Ausgangsmat. für Wiederanr.
7000 t Udep (0,3%)

Rosatom Wiederanreicherung
Schritt 1 (im Auftrag von Urenco)
0,79 Mio. SWU

Naturäquiv. Produkt
1095 t Ueq (0,71%)

DU Abfall / Ausgangsmat. für Wiederanr.
5905 t Udep (0,224%)

Rosatom Wiederanreicherung
Schritt 2 (auf eigene Rechnung)
Option N: 2,42 Mio. SWU
Option B: 3,37 Mio. SWU

Produkt
Option N: Uneq 1200 t Uneq (0,71%)
Option B: LEU 523 t Ueq (1,5%)

DU Abfall
Option N: 4705 t Udep (0,1%)
Option B: 5382 t Udep (0,1%)

Kursh: U-235 Konzentrationen
Produkt, das Rosatom auf eigene Rechnung erzeugt:
Option N: „naturäquivalentes“ Uran (0,71%), oder
Option B: Zumischkomponente (1,5%) zum Strecken von HEU
3. **Ersatz von Uran**

a. **Plutonium (MOX-Brennstoff)**

Bei Brennstoff für Leichtwasser-Reaktoren kann ein Teil des spaltbaren Uran-Isotops U-235 durch das Plutoniumisotop Pu-239 ersetzt werden. Zu diesem Zweck wird Plutonium mit Natururan oder leicht angereichertem Uran gemischt, um einen Mischoxid (MOX)-Brennstoff zu erzeugen. Plutonium steht aus überschüssigem Atomwaffenmaterial und aus der Wiederaufarbeitung von abgebrannten Brennelementen zur Verfügung. Tab. 7 zeigt einen Versuch, die weltweiten Lagerbestände an diesem Material zusammenzutragen:
Tab. 7: Waffenfähiges Plutonium, Stand Ende 2003 [t Pu] [CISAC 2005]

<table>
<thead>
<tr>
<th>Land</th>
<th>Pu in Waffenqualität</th>
<th>Abgetrenntes ziviles Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Gesamt)</td>
<td>(Überschuß)</td>
</tr>
<tr>
<td>Belgien</td>
<td>--</td>
<td>3,5</td>
</tr>
<tr>
<td>China</td>
<td>4,8 ± 2</td>
<td>0</td>
</tr>
<tr>
<td>Frankreich</td>
<td>5 ± 1,5</td>
<td>78</td>
</tr>
<tr>
<td>Deutschland</td>
<td>--</td>
<td>11</td>
</tr>
<tr>
<td>Indien</td>
<td>0,3-0,47</td>
<td>2-3</td>
</tr>
<tr>
<td>Israel</td>
<td>0,5-0,65</td>
<td>--</td>
</tr>
<tr>
<td>Japan</td>
<td>--</td>
<td>5,4</td>
</tr>
<tr>
<td>Nord Korea</td>
<td>0,015-0,038</td>
<td>--</td>
</tr>
<tr>
<td>Pakistan</td>
<td>0,02-0,06</td>
<td>--</td>
</tr>
<tr>
<td>Südafrika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Großbritannien</td>
<td>7,6</td>
<td>4,4</td>
</tr>
<tr>
<td>USA</td>
<td>85</td>
<td>38</td>
</tr>
<tr>
<td>UdSSR/Russland</td>
<td>145 ± 25</td>
<td>50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>248 ± 30</td>
<td>92</td>
</tr>
</tbody>
</table>

Eine Tonne Plutonium in Waffenqualität ersetzt etwa 120 Tonnen Unat und 80.000 SWU [NEA 2004], [ESA AR 2003].

Für das IAEA-Szenario gemachte Annahme:
- Es wird angenommen, dass der Gebrauch von MOX-Brennstoff bis 2012 konstant zunimmt und sich dann bis 2050 bei 3.600 Tonnen Uran Natururanäquivalent stabil hält [IAEA 2002].
b. Thorium

4. Kombinierte Daten der Uran-Vorräte

Tab. 8 fasst die Uran-Vorräte aus den unterschiedlichen Quellen zusammen. Wiederaufarbeitungsuran und wiedergereichertes Uran sind in dieser Tabelle nicht erfasst, da für sie ein „Vorrat“ nicht ohne weiteres angegeben werden kann. Für sie können nur Produktionszahlen aufgrund von vorhandenen Verarbeitungskapazitäten angegeben werden.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Vorrat</th>
<th>Einheit</th>
<th>Faktor</th>
<th>t Unat äquiv.</th>
<th>Zwi.-Summe</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAR 80 $/kgU</td>
<td>2.458.152</td>
<td>t Unat</td>
<td>1</td>
<td>2.458.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAR 80 -130$/kgU</td>
<td>711.086</td>
<td>t Unat</td>
<td>1</td>
<td>711.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAR I 80 $/kgU</td>
<td>1.078.762</td>
<td>t Unat</td>
<td>1</td>
<td>1.078.762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAR I 80 – 130 $/kgU</td>
<td>340.688</td>
<td>t Unat</td>
<td>1</td>
<td>340.688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-- Primär, Zwischensumme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.588.688</td>
<td>4.588.688</td>
</tr>
<tr>
<td>HEU mil., Überschuß b)</td>
<td>423</td>
<td>t Uenr</td>
<td>300</td>
<td>126.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEU zivil b)</td>
<td>50</td>
<td>t Uenr</td>
<td>300</td>
<td>15.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- HEU, Zwischensumme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141.900</td>
<td></td>
</tr>
<tr>
<td>LEU Lagerbestand a) ></td>
<td>?</td>
<td>t Uenr</td>
<td>?</td>
<td>23.440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unat Lagerbestand a) ></td>
<td>41.663</td>
<td>t Unat</td>
<td>1</td>
<td>41.663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- U Lagerbestand, Zwi.summe ></td>
<td></td>
<td></td>
<td></td>
<td>65.103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu mil., Überschuß b)</td>
<td>92</td>
<td>t Pu</td>
<td>120</td>
<td>11.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu zivil b)</td>
<td>252</td>
<td>t Pu</td>
<td>120</td>
<td>30.240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pu, Zwischensumme</td>
<td></td>
<td></td>
<td></td>
<td>41.280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-- Sekundär, Zwischensumme</td>
<td></td>
<td></td>
<td></td>
<td>248283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td></td>
<td></td>
<td></td>
<td>4.836.971</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Stand 1.1.2003 [NEA 2004]
b) Stand 31.12.2003 [CISAC 2005]
c) einschließlich Material, für das keine Kostenkategorie angegeben war

Wie man sieht, haben die in Tab. 8 enthaltenen sekundären Vorräte aus Lagerbeständen nur einen Anteil von etwa fünf Prozent an den Gesamtvorräten.

5. Einflussfaktoren auf die Uran-Vorräte

Es existieren eine ganze Reihe von Faktoren, die sich auf die zukünftige Verfügbarkeit von Uran auf die eine oder andere Weise auswirken können. Das macht Vorhersagen sehr schwer.
• Ausbeute beim Bergbau von Abbautechnologie abhängig
Beim Lösungsbergbau (in-situ leaching) kann nur etwa 75% des im Erz enthaltenen Urans extrahiert werden, während es beim konventionellen Bergbau 95% und mehr sind. Eine zu erwartende Steigerung des Lösungsbergbau-Anteils senkt also die Ausbeute aus einer Lagerstätte und damit die insgesamt gewinnbare Uran-Menge.

• Uran-Angebot steigt mit dem Preis

• Die Gewinnung von Uran als Nebenprodukt ist abhängig von der des Hauptprodukts
Die südafrikanische Goldbergbau-Industrie beispielsweise, die Uran als Nebenprodukt gewinnt, steckt derzeit in einer schweren Krise. Die Bergleute müssen immer tiefer vordringen, um an die verbliebenen Vorkommen zu gelangen – bis zu drei Kilometer tief, wo Temperaturen und Gebirgsdruck stark zunehmen, während ausländische Konkurrenten im Tagebau arbeiten können. Im Zusammenspiel mit dem hohen Wechselkurs der Landeswährung führt dies zu einer sinkenden Produktion bei steigenden Produktionskosten, mit der Folge, dass Bergwerke schließen müssen. Deshalb kann die Uran-Produktion nicht mehr ihren früheren Stand erreichen, selbst wenn der steigende Uran-Preis es erlaubt die Anlagen für die Uran-Abtrennung bei den Goldbergwerken wieder in Betrieb zu nehmen.

• Neue Uran-Vorräte können durch Exploration gefunden werden

• Politische Opposition gegen neue Uran-Bergwerke
Die geplanten neuen Uran-Bergwerke in den indischen Bundesstaaten Andhra Pradesh und Meghalaya stehen unter heftigem Beschuss örtlicher Umweltgruppen.
Die Opposition gegen neue Uran-Bergwerke ist jedoch nicht auf Umweltschutzorganisationen und Ureinwohner beschränkt: In Australien lehnen die Regierungen dreier Bundesstaaten (Queensland, Victoria und Western Australia) jeglichen Uran-Bergbau ab. Das hält Explorationsfirmen jedoch nicht ab, ihre Arbeit in diesen Staaten fortzusetzen. Sie hoffen offensichtlich darauf, dass diese Staaten ihre Politik ändern werden. Im Übrigen hatte die frühere Labor-Regierung in Australien eine „3-mines policy“ aufgestellt, der zufolge nicht mehr als drei Uran-Bergwerke gleichzeitig in ganz Australien in Betrieb sein sollten, aber die gegenwärtige Regierung hat diese Politik aufgegeben.

- **Auswirkung von Anreicherungskosten und tails assay**

<table>
<thead>
<tr>
<th></th>
<th>0,30%</th>
<th>0,25%</th>
<th>0,20%</th>
<th>0,15%</th>
<th>0,10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unat Zufuhr [t U]</td>
<td>8,05</td>
<td>7,28</td>
<td>6,67</td>
<td>5,16</td>
<td>4,74</td>
</tr>
<tr>
<td>SWU</td>
<td>4,531</td>
<td>5,020</td>
<td>5,646</td>
<td>6,494</td>
<td>7,763</td>
</tr>
<tr>
<td>Udep tails [t U]</td>
<td>7,05</td>
<td>6,28</td>
<td>5,67</td>
<td>6,16</td>
<td>5,74</td>
</tr>
</tbody>
</table>

- **Politische Opposition gegen MOX-Brennstoff**

- **Verfügbarkeit von HEU unterliegt politischen Entscheidungen**

- **Verfügbarkeit von überschüssigen Anreicherungskapazitäten für die Wiederanreicherung von tails**
• **Unsicherheit über Lagerbestände**
B. Auswirkungen des Uran-Bergbaus auf die Umwelt

1. Übersicht über die Umweltauswirkungen

Abb. 9: Schema der Herstellung von Nuklearbrennstoff (für konventionellen Bergbau)

a. Uran-Bergwerke

Uran wird überwiegend im Tagebau oder in Untertage-Bergwerken abgebaut. Außer bei einigen wenigen Reicherzlagerstätten enthält das Erz einen Uran-Anteil von unter 0,5%. Deshalb müssen große Mengen Erz abgebaut werden, um an das Uran zu kommen. Während des Bergbaus werden große Mengen kontaminierten Wassers aus dem Bergwerk abgepumpt und in Flüsse und Seen abgelassen, wo die enthaltenen Radionuklide sich oft in Sedimenten anreichern. Die Belüftung der Bergwerke mindert zwar die Gesundheitsgefahren für die Bergarbeiter, bläst aber radioaktiven Staub und Radongas ins Freie und trägt damit zum Lungenkrebsrisiko der Anwohner bei.
b. Abfallgestein

Abb. 10: Skala der Uran-Konzentrationen in Gestein

![Skala der Uran-Konzentrationen in Gestein](image)

<table>
<thead>
<tr>
<th>Aktivität pro Nuklid der U-238-Reihe</th>
<th>Uranger</th>
<th>0,1 %</th>
<th>0,01 %</th>
<th>1 %</th>
<th>10000 g/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,037</td>
<td>0,1</td>
<td>1</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
</tr>
</tbody>
</table>

c. Haldenlaugung

In bestimmten Fällen wird Uran aus niedriggradigen Erzen durch Haldenlaugung gewonnen. Diese Methode kommt infrage, wenn der Uran-Gehalt im Erz zu niedrig ist für die wirtschaftliche Verarbeitung in einem Uranerz-Aufbereitungsbetrieb. Die basische oder saure Lösungsflüssigkeit (häufig Schwefelsäure) wird oben auf die Halde aufgebracht und sickert nach unten durch, bis sie auf eine Auskleidung unter der Halde trifft, wo sie aufgefangen und in eine Aufbereitungsanlage gepumpt wird.

d. Lösungsbergbau (in-situ leaching)

Beim Lösungsbergbau wird eine basische oder saure Lösung (z.B. Ammoniumkarbonat oder Schwefelsäure) durch Bohrlöcher in eine unterirdische Uran-Lagerstätte gepresst und die uranhaltige Lösung anschließend wieder zur Oberfläche gepumpt (siehe Abb. 11). Bei dieser Technologie braucht also, anders als beim konventionellen Bergbau, das Erz nicht aus der
Lagerstätte herausgeholt zu werden. Die Technologie kann nur bei Lagerstätten eingesetzt werden, die in einem Grundwasserleiter in durchlässigem Gestein liegen, nicht zu tief unter der Oberfläche (ca. 200 m) und die von undurchlässigen Gesteinsschichten umgeben sind.

Abb. 11: Das Lösungsbergbau-Verfahren (in-situ leaching)

e. **Aufbereitung des Erzes**

f. Deponien für Uranerz-Aufbereitungsrückstände (tailings)

- Eigenschaften der Uranerz-Aufbereitungsrückstände

Abb. 12: Die Zerfallsreihe von Uran-238

Die Zerfallsreihe des Uran-238

<table>
<thead>
<tr>
<th>Ordnungszahl</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Pb-214</td>
<td>Po-218</td>
<td>Rn-222</td>
<td>Ra-226</td>
<td>Th-230</td>
<td>U-234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zerfallsart</td>
<td>α</td>
<td>α</td>
<td>α</td>
<td>α</td>
<td>α</td>
<td>α</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halbwertszeit</td>
<td>26,8 m</td>
<td>3,05 m</td>
<td>3,8 d</td>
<td>1600 a</td>
<td>8·10^4 a</td>
<td>2,5·10^5 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nur Hauptzerfallsarten gezeigt
Gamma-Strahler nicht gekennzeichnet

Namens der Elemente:
- Bi = Wismut
- Po = Protactinium
- Pb = Blei
- Po = Polonium
- Ra = Radium
- Rn = Radon
- Th = Thorium
- U = Uran

Zeiteinheiten der Halbwertszeiten:
- s = Sekunden
- m = Minuten
- h = Stunden
- d = Tage
- a = Jahre

Während der ersten Monate geht die Radioaktivität der Aufbereitungsrückstände leicht zurück (aufgrund des Zerfalls von Th-234 und Pa-234 m) und bleibt dann konstant. Erst nach mehreren hunderttausend Jahren geht die Radioaktivität der Rückstände – und damit ihre Radon-Abgabe merklich zurück; sie fällt dann bis auf den Wert, der durch den Restgehalt an Uran gegeben ist (siehe Abb. 13, man beachte die logarithmische Zeitachse).

Abb. 13: In den Uran-Aufbereitungsrückständen verbleibende Radioaktivität (Stapeldiagramm für die U-238-Reihe)

Radioaktivität in den Tailings
(U-238 Reihe)

- Gefahrenpotential von Uranerz-Aufbereitungsrückständen

Abb. 14: Gefahren von Uranerz-Aufbereitungsrückständen

Aufgrund der langen Halbwertszeiten der beteiligten radioaktiven Substanzen müssen die Rückstandsdeponien über sehr lange Zeiträume gesichert werden, was jedoch wegen der vielfältigen Erosionseinflüsse schwierig ist. Nach Niederschlägen können sich Erosionsrinnen über sehr lange Zeiträume mit Schadstoffen füllen; Pflanzennährstoffe können sich in das Innere der Deponie eindringen und so das Material ausbreiten, die Radon-Ausgasung erhöhen und die ganze Deponie anfälliger für Erosion machen. Im Fall von Erdbeben, Starkregen oder Hochwasser können die Deponien sogar komplett zerstört werden. Im Folgenden werden einige Dammbrüche von Deponien mit Uranerz-Aufbereitungsrückständen angeführt:

- 1979, Church Rock, New Mexico, USA: Austritt von über 1.000 Tonnen Schlamm und 400 Mio. Litern kontaminierten Wassers.

2. Sanierung von Uran-Bergwerken

In den frühen Jahren des Uran-Bergbaus, nach dem Zweiten Weltkrieg, haben die Bergbauunternehmen ihre Standorte vielfach ohne größere Aufräumarbeiten verlassen, wenn die Lagerstätte erschöpft war: In den USA wurden z.B. oft die Anlagen für Bergbau und Aufbereitung nicht abgerissen, nicht einmal die Grubenöffnungen wurden gesichert, ganz zu schweigen von einer langfristigen Sicherung der produzierten Abfälle; in Kanada wurden die Aufbereitungsrückstände vielfach einfach in den nächsten See gekippt.

Bergwerke und Abfallgestein

In-situ leaching

Uranerz-Aufbereitungsrückstände

Uranerz-Aufbereitungsrückstände (tailings) werden meist in der einen oder anderen Form deponiert, um den Schadstoffaustrag in die Umwelt zu begrenzen. In den frühen Jahren ließ man die Rückstände jedoch in einigen Fällen einfach in die Umgebung laufen. Das erschreckendste Beispiel dafür ist der Fall von Mounana in Gabun, wo diese Praxis bis 1975 beibehalten wurde:

In Frankreich und Kanada wurde in den letzten Jahren allerdings an mehreren Standorten das Konzept verfolgt, die Aufbereitungsrückstände in alten Tagebaugruben im Grundwasser einzulagern. In diesem Fall wird zunächst eine hochdurchlässige Schicht um die Rückstände herum installiert, damit das Grundwasser frei um die Rückstände herum zirkulieren kann. Da die Rückstände selber eine kleinere Durchlässigkeit haben, wird angenommen (zumindest von den Verfechtern dieser Methode), dass praktisch kein Austausch von Schadstoffen zwischen Rückständen und Grundwasser stattfindet. Eine ähnliche Methode (genannt „previous surround disposal“) wird in Kanada für die Deponierung von Uranerz-Aufbereitungsrückständen in Seen oder alten Tagebaugruben verwendet. Bei neueren Vorhaben mit dieser Technik wird sogar die Notwendigkeit einer zusätzlichen durchlässigen Schicht um die Rückstände herum bestritten, da das umgebende Gestein schon eine genügend hohe Durchlässigkeit habe. In den meisten Fällen müssen die Rückstände mangels anderer Möglichkeiten an der Erdoberfläche gelagert werden. Dort kann man die Schutzmaßnahmen durch geeignete Vorkehrungen leichter unter Kontrolle halten, es bedarf aber zusätzlicher Maßnahmen zum Erosionsschutz.

In Kanada sind die für die Verwahrung der Rückstände ergriffenen Maßnahmen weniger weitgehend. Bei den großen Rückstandsdeponien im Gebiet von Elliot Lake in Ontario zum Beispiel, stellt eine Schicht Wasser über den Rückständen die einzige „Schutzbarriere“ dar. Die Aufbereitungs-Rückstände des derzeit arbeitenden Reicherz-Bergwerks McArthur River in
Saskatchewan werden in eine ehemalige Tagebaugrube des Bergwerks Key Lake gekippt, wo es immer wieder zu Hangrutschungen in die Deponie hinein kommt.

Sanierungskosten

Am unteren Ende des Kostenbereichs (für Bergwerke, bei denen Uran das Hauptprodukt ist) liegen die in Kanada angefallenen 0,48 US$ pro Tonnen Rückstände bzw. 0,12 US$/lb U₃O₈. Dies ist Ausdruck der außerordentlich niedrigen Umweltstandards, die in Elliot Lake angewandt wurden.

Während die Kosten für die Sanierung der Aufbereitungsrückstände stark von den angewandten Umweltstandards abhängen, sind die Kosten pro Tonne Rückstände kaum vom ursprünglichen Uran-Gehalt im Erz abhängig, da die Notwendigkeit von Maßnahmen überwiegend durch den Erosionsschutz vorgegeben ist. Die Sanierungskosten pro Tonne erzeugten Urans sind daher in erster Näherung ungefähr proportional zum Uran-Gehalt im Erz.

Um die Entstehung weiterer Altlasten zu vermeiden, die dann letztendlich wieder auf Kosten der Allgemeinheit zu sanieren sind, müssen Uran-Abbaufirmen heutzutage beim Beginn des Bergbaus Mittel in einen Sanierungsfonds heinzufügen. Aber auch dann ist nicht gewährleistet, dass nicht doch wieder der Steuerzahler einspringen muss: Die Beträge, die für die Sanierung der Rückstände der Altas Corp. in Moab, Utah in den USA zurückerstattet wurden, decken gerade einmal drei Prozent der aktuellen Kostenschätzungen von 300 Mio. US$ ab.

3. Typische Fallbeispiele früheren Uran-Bergbaus

Gesamtzahl der Uran-Bergleute gerade einmal 3.971 betrug. In späteren Jahren wurden auch große Bergwerke betrieben, wie Quivira und Homestake in New Mexico. Das Erz mit typischen Uran-Gehalten von 0,1-0,2% wurde in großen zentralisierten Aufbereitungsbetrieben verarbeitet.

4. Typische Fallbeispiele von aktiven Uran-Bergwerken

Ein weiteres wichtiges Bergwerk, der Tagebau Ranger im australischen Northern Territory liegt in einer tropisch feuchten Klimazone, die besondere Herausforderungen für die Wasserwirtschaft und die sichere Deponierung der Aufbereitungsrückstände mit sich bringt.
C. Bestehende und geplante technische Kapazitäten

1. Uran-Bergbau

a. Übersicht

Die Schätzungen der IAEA für die Uran-Produktions-Kapazitäten bis 2020 gehen (wie in Tab. 10 zu sehen ist) von einem Rückgang aus. Das ist allerdings schon etwas überholt, wie weiter unten bei der Diskussion der derzeit geplanten Bergwerke deutlich wird. Die Gesamtkapazität wird wohl eher konstant bleiben oder sogar etwas ansteigen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentinien</td>
<td>0</td>
<td>120</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>NA</td>
</tr>
<tr>
<td>Australien</td>
<td>9.400</td>
<td>9.400</td>
<td>9.900</td>
<td>8.600</td>
<td>8.600</td>
<td>8.600</td>
</tr>
<tr>
<td>Brasilien</td>
<td>340</td>
<td>340</td>
<td>510</td>
<td>850</td>
<td>1.100</td>
<td>1.100</td>
</tr>
<tr>
<td>China, Festld.</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>1.050</td>
<td>1.050</td>
<td>1.050</td>
</tr>
<tr>
<td>Tschechien</td>
<td>440</td>
<td>440</td>
<td>250</td>
<td>84</td>
<td>87</td>
<td>80</td>
</tr>
<tr>
<td>Indien</td>
<td>230</td>
<td>230</td>
<td>365</td>
<td>510</td>
<td>510</td>
<td>510</td>
</tr>
<tr>
<td>Iran</td>
<td>760</td>
<td>760</td>
<td>760</td>
<td>760</td>
<td>760</td>
<td>760</td>
</tr>
<tr>
<td>Kasachstan</td>
<td>3.315</td>
<td>3.500</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
</tr>
<tr>
<td>Mongolei</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Namibia</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
</tr>
<tr>
<td>Niger</td>
<td>3.800</td>
<td>3.800</td>
<td>3.800</td>
<td>3.800</td>
<td>3.800</td>
<td>3.800</td>
</tr>
<tr>
<td>Pakistan</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Rumänien</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Russland</td>
<td>3.000</td>
<td>3.200</td>
<td>3.300</td>
<td>4.700</td>
<td>4.700</td>
<td>4.700</td>
</tr>
<tr>
<td>Südafrika</td>
<td>1.270</td>
<td>1.270</td>
<td>1.270</td>
<td>1.270</td>
<td>1.270</td>
<td>1.270</td>
</tr>
<tr>
<td>Ukraine</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.500</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>USA</td>
<td>2.200</td>
<td>2.200</td>
<td>2.600</td>
<td>1.900</td>
<td>1.200</td>
<td>1.000</td>
</tr>
<tr>
<td>Usbekistan</td>
<td>2.300</td>
<td>2.500</td>
<td>2.300</td>
<td>2.500</td>
<td>3.000</td>
<td>3.000</td>
</tr>
<tr>
<td>Gesamt</td>
<td>47.260</td>
<td>46.000</td>
<td>45.295</td>
<td>43.059</td>
<td>43.612</td>
<td>43.005</td>
</tr>
</tbody>
</table>

*Produktionskapazität von bestehenden und beschlossenen Produktionszentren, getragen von Vorräten der Kategorien RAR and EAR-I, die zu Kosten bis zu 80 US$/kg gewonnen werden können.

NA = Angaben nicht verfügbar oder nicht berichtet

Wie in Tab. 11 zu sehen ist, wurde nicht die gesamte verfügbare Kapazität für die Produktion benötigt. 2003 betrug der Auslastungsfaktor insgesamt 76%, was eine 31 prozentige Produktionssteigerung ohne den Zubau von neuen Kapazitäten ermöglichen würde.
Tab. 11: Uran-Produktionskapazitäten und tatsächliche Produktion [t U/a] 2003 [NEA 2004]

<table>
<thead>
<tr>
<th>Land</th>
<th>Kapazität</th>
<th>Produktion</th>
<th>Auslastung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentinien</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Australien</td>
<td>9,400</td>
<td>7,572</td>
<td>81%</td>
</tr>
<tr>
<td>Brasilien</td>
<td>340</td>
<td>310</td>
<td>91%</td>
</tr>
<tr>
<td>Kanada</td>
<td>14,890</td>
<td>10,457</td>
<td>70%</td>
</tr>
<tr>
<td>China, Festland</td>
<td>850</td>
<td>750</td>
<td>88%</td>
</tr>
<tr>
<td>Tschechien</td>
<td>440</td>
<td>345</td>
<td>78%</td>
</tr>
<tr>
<td>Deutschland</td>
<td>0</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Indien</td>
<td>230</td>
<td>230</td>
<td>100%</td>
</tr>
<tr>
<td>Kasachstan</td>
<td>3,315</td>
<td>3,300</td>
<td>100%</td>
</tr>
<tr>
<td>Namibia</td>
<td>4,000</td>
<td>2,036</td>
<td>51%</td>
</tr>
<tr>
<td>Niger</td>
<td>3,800</td>
<td>3,143</td>
<td>83%</td>
</tr>
<tr>
<td>Pakistan</td>
<td>65</td>
<td>45</td>
<td>69%</td>
</tr>
<tr>
<td>Rumänien</td>
<td>100</td>
<td>90</td>
<td>90%</td>
</tr>
<tr>
<td>Russland</td>
<td>3,060</td>
<td>3,150</td>
<td>103%</td>
</tr>
<tr>
<td>Südafrika</td>
<td>1,270</td>
<td>758</td>
<td>66%</td>
</tr>
<tr>
<td>Ukraine</td>
<td>1,000</td>
<td>800</td>
<td>80%</td>
</tr>
<tr>
<td>USA</td>
<td>2,200</td>
<td>846</td>
<td>38%</td>
</tr>
<tr>
<td>Usbekistan</td>
<td>2,300</td>
<td>1,770</td>
<td>77%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>47,260</td>
<td>35,772</td>
<td>76%</td>
</tr>
</tbody>
</table>

b. Aktuelle Entwicklungen

- Konventioneller Bergbau - d.h. Bergbau untertage und im Tagebau

Kanada
Cameco hat eine Genehmigung beantragt, die jährliche Produktion des Bergwerks McArthur River um 18% auf 8.500 Tonnen Uran pro Jahr zu erhöhen.
Der Bau des Bergwerks auf der großen Reicherz-Lagerstätte Cigar Lake in Saskatchewan wurde 2004 genehmigt; die geplante Kapazität beträgt 6.930 Tonnen Uran pro Jahr.
Das Projekt Midwest in Saskatchewan bekam 2002 eine Genehmigung für Vorbereitungsarbeiten zur Errichtung eines Bergwerks, bisher wird die Lagerstätte aber noch für eine zukünftige Ausbeutung vorgehalten.
Die geplante „Sue E“- Erweiterung des Bergwerks McClean Lake in Saskatchewan wurde im Dezember 2005 genehmigt.

USA
Mehrere kleinere Uran-Bergwerke im Südwesten von Colorado sind kürzlich wiedereröffnet worden, und weitere Bergwerke sollen bald folgen, wie z.B. das Bergwerk Slick Rock von Cotter Corp. USEG, das plant, die brachliegenden Bergwerke Sheep Moutain in Wyoming wieder in Betrieb zu nehmen.
obsolet ist. Die Aufbereitungsanlage Sweetwater von Kennecott in Wyoming (350 Tonnen Uran pro Jahr) befindet sich immer noch in Betriebsbereitschaft.

Afrika

Der Betrieb des Bergwerks Rössing in Namibia, das ursprünglich 2007 wegen Erschöpfung der Lagerstätte geschlossen werden sollte, wird bis 2016 verlängert.

Paladin Resources errichtet derzeit ein Uran-Bergwerk an der Lagerstätte Langer Heinrich in Namibia (848 t U) und plant ein weiteres in Kayelekera in Malawi.

AngloGold plant, seine Produktionskapazität durch die Inbetriebnahme des neuen Goldbergwerks Moab Khotsong in Südafrikas Vaal River Region zu erhöhen; die Firma erwartet dort auf Erze mit etwas höheren Uran-Gehalten zu stoßen.

Aflease Gold and Uranium Resources hat Pläne aufgegeben, Uran-Reste aus den Aufbereitungsrückständen von Harmony Gold in Südafrika zu gewinnen. Dafür hat die Firma First Uranium nun ein Auge auf die tailings des Goldbergwerkes Buffelsfontein geworfen: Rest-Uran-Gehalt 0,0057%.

Asien

Uranium Corporation of India plant, neue Uran-Bergwerke bei den Armerzlagerstätten Baghjanta und Bandugurang (Jharkhand), Lambapur-Peddagattu (Andhra Pradesh) und Domiasiat (Meghalaya) in Betrieb zu nehmen. Im Moment sieht sich die Firma in den betreffenden Regionen jedoch massivem Widerstand gegenüber. Für Lambapur-Peddagattu wurde im Dezember 2005 die Umweltfreigabe erteilt: Hier soll auf einer Fläche von 526,65 Hektar eine Lagerstätte abgebaut werden, die gerade einmal 5.900 Tonnen Uran enthält: 447,04 Hektar der Fläche sind derzeit noch bewaldet.

Australien

WMC prüft derzeit Überlegungen, die Uran-Produktionskapazität des Bergwerks Olympic Dam von derzeit 4.000 Tonnen Uran auf 30.000 Tonnen Uran zu erhöhen und damit mehr als zu versiebenfachen.

- **In-situ leach (ISL) Produktion**

USA

Asien

Kasachstan plant, seine jährliche Uran-Produktion von 3.000 Tonnen auf 12.000 Tonnen im Jahre 2015 zu erhöhen. Dies soll, teils in Joint Ventures mit westlichen Firmen, möglich werden mit der Inbetriebnahme von in-situ leaching an den Lagerstätten Akdal, Karamurun, Zarechnoye (Produktion soll im April 2006 beginnen und dann bis auf 420 Tonnen Uran pro Jahr ansteigen),
Inkay (Produktion soll 2007 beginnen und 2010 dann 2.000 Tonnen Uran pro Jahr erreichen) und Muyunkum (Produktion sollte Ende 2005 beginnen und dann bis auf 1300 Tonnen Uran pro Jahr zunehmen).

Australien

Die Pläne für das in-situ leach Projekt Honeymoon in Südaustralien wurden 2004 auf Eis gelegt.

2. Konversion zu UF₆

Tab. 12: Anlagen für die Konversion zu Uranhexafluorid [WUP HP]

<table>
<thead>
<tr>
<th>Land</th>
<th>Betreiber</th>
<th>Name/Standort</th>
<th>Kapazität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasilien</td>
<td>IPEN</td>
<td>São Paulo</td>
<td>90</td>
</tr>
<tr>
<td>Kanada</td>
<td>Cameco</td>
<td>Port Hope, Ontario ¹</td>
<td>10.500</td>
</tr>
<tr>
<td>China</td>
<td>CNNC</td>
<td>Lanzhou</td>
<td>400</td>
</tr>
<tr>
<td>Frankreich</td>
<td>COMURHEX (100% Cogéma)</td>
<td>Pierrelatte 1 ²</td>
<td>14.000</td>
</tr>
<tr>
<td>Iran</td>
<td>AEOI</td>
<td>Isfahan</td>
<td>193</td>
</tr>
<tr>
<td>Russland</td>
<td>Rosatom</td>
<td>Ekaterinburg</td>
<td>4.000</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>British Nuclear Fuels, Ltd.</td>
<td>Springfields, Lancashire</td>
<td>6.000</td>
</tr>
<tr>
<td>USA</td>
<td>Honeywell (Converdyn)</td>
<td>Metropolis, Illinois</td>
<td>14000</td>
</tr>
</tbody>
</table>

Gesamt | 6.953

¹ Konversion von U₃O₈ zu Uranhexafluorid (UF₆), wenn nicht anders angegeben.

² Nominelle Kapazität

³ UO₃ zu UF₆. U₃O₈ wird in einem Zwischenschritt in Blind River, Ontario, zu UO₃ konvertiert.

⁴ UF₆ zu UF₄. U₃O₈ wird in einem Zwischenschritt in der Anlage Malvési zu UF₄ konvertiert.

⁵ Konversion von Wiederaufarbeitungsuran (RepU) zu UF₆.

3. Anreicherung

<table>
<thead>
<tr>
<th>Land</th>
<th>Betreiber</th>
<th>Name/Standort</th>
<th>Kapazität "a) [Mio. SWU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>CNNC</td>
<td>Lanzhou</td>
<td>0,90</td>
</tr>
<tr>
<td>Frankreich</td>
<td>EURODIF</td>
<td>Tricastin</td>
<td>10,80</td>
</tr>
<tr>
<td>USA</td>
<td>U.S. Enrichment Corp.</td>
<td>Paducah, Kentucky</td>
<td>11,30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Portsmouth, Piketon, Ohio</td>
<td>7,40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(im “cold standby” seit 11. Mai 2001)</td>
<td></td>
</tr>
<tr>
<td>Zwischensumme</td>
<td></td>
<td></td>
<td>30,40</td>
</tr>
<tr>
<td>China</td>
<td>CNNC</td>
<td>Hanzhong</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lanzhou</td>
<td>0,50</td>
</tr>
<tr>
<td>Deutschland</td>
<td>Urenco</td>
<td>Gronau</td>
<td>1,46</td>
</tr>
<tr>
<td>Japan</td>
<td>JNC</td>
<td>Ningyo Toge</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>Japan Nuclear Fuel Limited (JNFL)</td>
<td>Rokkasho-mura</td>
<td>1,05</td>
</tr>
<tr>
<td>Niederlande</td>
<td>Urenco</td>
<td>Almelo</td>
<td>1,95</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Pakistan Atomic Energy Commission (PAEC)</td>
<td>Kahuta</td>
<td>0,005</td>
</tr>
<tr>
<td>Russland</td>
<td>Rosatom</td>
<td>Urals Electrochemical Integrated Enterprise (UEIE), Novouralsk (ehemals Sverdlovsk-44, bei Jekaterinburg)</td>
<td>7,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siberian Chemical Combine (SKhK), Seversk (ehemals Tomsk-7)</td>
<td>4,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrochemical Plant (ECP), Zelenogorsk (ehemals Krasnoyarsk-45)</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angarsk Electrolytic Chemical Combine (AEKhK), Angarsk</td>
<td>1,00</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>Urenco</td>
<td>Capenhurst</td>
<td>2,44</td>
</tr>
<tr>
<td>Zwischensumme</td>
<td></td>
<td></td>
<td>23,11</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td>53,51</td>
</tr>
</tbody>
</table>

*a) Nominelle Kapazität

SWU = Separative Work Unit

Portsmouth: “cold standby” bedeutet, dass die Anlage in einem solchen Zustand gehalten wird, dass sie bei Bedarf innerhalb von 18 bis 24 Monaten wieder in Betrieb gehen könnte.

Zentrifugenanlagen sind im Bau in Resende, Brasilien und Natanz, Iran.

Weitere Zentrifugenanlagen sind geplant:

- American Centrifuge Plant, Piketon, Ohio, USA (USEC), die zunächst vorgesehene Kapazität von 3,5 Mio. SWU soll 2010 erreicht werden.
- Georges Besse II Anlage, Tricastin, Frankreich (Eurodif/Cogéma), der Produktionsbeginn ist für 2007 vorgesehen, und die volle Kapazität von 7,5 bis 11 Mio. SWU pro Jahr soll 2016 erreicht werden.
Die beiden letzteren Anlagen sollen die an den jeweiligen Standorten bestehenden Diffusionskapazitäten ersetzen.

Die russische Atombehörde Rosatom wendet zurzeit sieben Mio. SWU pro Jahr für die Wiederanreicherung von abgereichertem Uran auf, das sie von Cogéma und Urenco erhält (siehe S. 18); zusätzlich benutzt Rosatom auch noch eigenes Material zur Wiederanreicherung.

Die Anreicherung von einer Tonne Unat (als U$_3$O$_8$) auf 3,6% erfordert 560 SWU (bei einem tails assay von 0,3%):
Die Gesamtkapazität von 53,51 Mio. SWU pro Jahr ermöglicht daher die Anreicherung von ca. 95.500 Tonnen Unat zu 3,6%, wenn tatsächlich die ganze Kapazität für die Anreicherung von Natururan benutzt würde und keine Kapazitäten für die Wiederanreicherung von abgereichertem Uran belegt würden.

Der Verbrauch von 8,1 Tonnen Unat pro erzeugter Tonne Uenr kann auf Kosten der aufzuwendenden SWU gesenkt werden, indem ein niedriger tails assay eingestellt wird: Mit einem abgesenkten tails assay von 0,25% würde dieselbe Kapazität von 53,51 Mio. SWU pro Jahr ausreichen, etwa 78.000 Tonnen Unat zu 10.700 Tonnen Uenr mit 3,6% anzureichern (also 7,3 t Unat pro t Uenr), und, bei einem noch weiter abgesenkten tails assay von 0,2% könnten etwa 63.500 Tonnen Unat zu 9.500 Tonnen Uenr mit 3,6% angereichert werden (also 6,7 t Unat pro t Uenr). Solche niedrigeren tails assay können interessant werden, wenn der Preis für Uran-Konzentrat weiterhin schneller ansteigt als der für Anreicherung.

4. Herstellung von Nuklearbrennstoff

Die Kapazitäten für die Herstellung von Leichtwasser-Reaktor-Brennstoff sind in Tab. 14 aufgeführt, die für Mischoxid-Brennstoff (MOX) in Tab. 15. Die ersteren Kapazitäten beinhalten auch die Dekonversion des angereicherten Urans von UF$_6$ zur Uranoxid-Form.

MOX-Brennstoff mit einem Inhalt von 0,122 Tonnen HM (bestehend aus etwa 8 kg Plutonium und 114 kg Unat) ersetzt den Uranoxid-Brennstoff, der aus einer Tonne Unat durch Anreicherung auf 3,6% hergestellt werden kann; insgesamt werden also 0,886 Tonnen Unat ersetzt.

Der Bau der MOX-Brennstoff-Fabrik von BNFL in Sellafield ist bereits seit Jahren abgeschlossen, trotzdem funktioniert die Anlage nicht wie vorgesehen. Im Oktober 2004 hat BNFL dann seinen schärfsten Wettbewerber Cogéma zu Hilfe gerufen, um die Anlage zum Laufen zu bringen.

Derzeit geplante Projekte für neue MOX-Fabrikationsanlagen umfassen:
- Savannah Riversite in South Carolina (Duke, Cogema, Stone and Webster, 70 MTHM/a) und eine ähnliche Anlage in Seversk, Russland
- Lanzhou, China (ehemalige Siemens MOX-Anlage aus Hanau?)
- JNFL Rokkasho, Japan (130 t MOX/a)

Die Kapazitäten für die Herstellung von Brennstoff für Schwerwasser-Reaktoren (HWR) sind in Tab. 16 angeführt. Dieser Brennstoff wird aus Natururan hergestellt, es wird keine Anreicherung benötigt.
Cameco hatte vor, Anlagen für das Mischen eines neuen Brennstofftyps für die CANDU-Reaktoren in Port Hope zu errichten (slightly enriched uranium (SEU) blending project). Das Projekt wurde jedoch im September 2005 nach Protesten aus der Bevölkerung abgeblasen; die Arbeiten sollen nun ins Ausland vergeben werden.

Cameco will die Kapazität der Uran-Raffinerie Blind River erweitern. Das raffinierte UO$_3$ soll dann in die Konversionsanlage Springfields von BNFL in Großbritannien geschickt werden.

Tab. 14: Uranoxid-Brennstoff-Fabriken für Leichtwasser-Reaktoren [WUP HP]

<table>
<thead>
<tr>
<th>Land</th>
<th>Betreiber</th>
<th>Name/Standort</th>
<th>Kapazität a [t U/a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgien</td>
<td>FBFC (49% Cogéma, 51% Framatome)</td>
<td>Dessel</td>
<td>750</td>
</tr>
<tr>
<td>Brasilien</td>
<td>FEC (INB)</td>
<td>Resende</td>
<td>100</td>
</tr>
<tr>
<td>China</td>
<td>CNNC</td>
<td>Yibin</td>
<td>100</td>
</tr>
<tr>
<td>Frankreich</td>
<td>FBFC (49% Cogéma, 51% Framatome)</td>
<td>Romans-sur-Isère</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td>SICN (100% Cogéma)</td>
<td>Veurey-Voroise</td>
<td>150</td>
</tr>
<tr>
<td>Deutschland</td>
<td>Advanced Nuclear Fuels (66% Areva, 34% Siemens)</td>
<td>Lingen</td>
<td>650</td>
</tr>
<tr>
<td>Indien</td>
<td>Nuclear Fuel Complex</td>
<td>Hyderabad</td>
<td>25</td>
</tr>
<tr>
<td>Japan</td>
<td>Japan Nuclear Fuel Co., Ltd.</td>
<td>Yokosuka City</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Mitsubishi Nuclear Fuel</td>
<td>Tokai-Mura</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>Nuclear Fuels Industries</td>
<td>Kumatori</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>Tokai-Mura</td>
<td>Tokai-Mura</td>
<td>200</td>
</tr>
<tr>
<td>Kasachstan</td>
<td>Ulba Metallurgical Co</td>
<td>Kamenogorsk</td>
<td>2.000</td>
</tr>
<tr>
<td>Südkorea</td>
<td>KEPCO Nuclear Fuel Co., Ltd. (KNFC)</td>
<td>Taejon</td>
<td>400</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Pakistan Atomic Energy Commission (PAEC)</td>
<td>Kundian</td>
<td>?</td>
</tr>
<tr>
<td>Russland</td>
<td>JSC TVEL</td>
<td>Elektrostal</td>
<td>1.020</td>
</tr>
<tr>
<td></td>
<td>Novosibirsk</td>
<td>Novosibirsk</td>
<td>1.000</td>
</tr>
<tr>
<td>Spanien</td>
<td>ENUSA</td>
<td>Juzbado</td>
<td>300</td>
</tr>
<tr>
<td>Schweden</td>
<td>BNFL/Westinghouse Atom</td>
<td>Västerås</td>
<td>600</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>British Nuclear Fuels, Ltd.</td>
<td>Springfields, Lancashire</td>
<td>330</td>
</tr>
<tr>
<td>USA</td>
<td>Westinghouse (100% BNFL)</td>
<td>Columbia, S. Carolina</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td>Framatome ANP, Inc.</td>
<td>Lynchburg, Virginia</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Framatome ANP (66% Areva, 34% Siemens)</td>
<td>Richland, Washington</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Global Nuclear Fuel - Americas, L.L.C.</td>
<td>Wilmington, N. Carolina</td>
<td>1200</td>
</tr>
</tbody>
</table>

Gesamt 13.369

a Nominelle Kapazität

Eine Tonne Unat (als U$_3$O$_8$) ergibt 0,122 Tonnen Uran als angereichertes UO$_2$ (angereichert auf 3,6%, bei einem tails assay von 0,3%). Eine Kapazität von 13.369 Tonnen Uenr erfordert also die ursprüngliche Bereitstellung von 109.582 Tonnen Unat.
5. Kombinierte Daten zu Kapazitäten

Tab. 17 zeigt eine Zusammenstellung der Kapazitäts-Angaben, die für die Anlagen der Brennstoff-Herstellung verfügbar sind.

Tab. 17: Kapazitäten für die Herstellung von Nuklear-Brennstoff, 2004

<table>
<thead>
<tr>
<th>Nominelle Kapazität</th>
<th>Einheit</th>
<th>Skalierungsfaktor</th>
<th>Kapazität [t Unat äquiv.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uran-Bergbau und Erzaufbereitung</td>
<td>46.000 t U als U₃O₈</td>
<td>1</td>
<td>46000</td>
</tr>
<tr>
<td>Konversion</td>
<td>69.533 t U als U₃O₈</td>
<td>1</td>
<td>69533</td>
</tr>
<tr>
<td>Anreicherung</td>
<td>53.505.000 SWU</td>
<td>1/560</td>
<td>95545</td>
</tr>
<tr>
<td>Brennelement-Fabrikation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UOX</td>
<td>13.369 t U als UO₂</td>
<td>1/0,122</td>
<td>109.582</td>
</tr>
<tr>
<td>MOX</td>
<td>460 t HM</td>
<td>0,886/0,122</td>
<td>3.341</td>
</tr>
<tr>
<td>HWR</td>
<td>3.550 t U als UO₂</td>
<td>1</td>
<td>3.550</td>
</tr>
</tbody>
</table>

a) Produktionskapazität von bestehenden und beschlossenen Produktionszentren, getragen von Vorräten der Kategorien RAR and EAR-I, die zu Kosten bis zu 80 US$/kg gewonnen werden können. Konversionsverlust: 0,5%, Anreicherung auf 3,6% (tails assay 0,3%), Verlust bei Brennstoffherstellung: 1%

6. Einflussfaktoren auf Produktionskapazitäten

- **Risiken aufgrund der Abhängigkeit von einer kleinen Zahl großer Produzenten**

- **Risiken aufgrund des hohen Anteils sekundärer Quellen**
 Gegenwärtig trägt die primäre Produktion aus dem Bergbau gerade einmal 52% zur Uran-Versorgung bei. Wenn es zu einer Unterbrechung der sekundären Quellen (aus welchem Grund auch immer) kommen sollte, müsste die Produktion aus dem Bergbau fast verdoppelt werden.

- **Auslaufen der sekundären Quellen erfordert Erhöhung der primären Produktion**
 Mehrere sekundäre Quellen, wie das Strecken von HEU, die Lagerbestände an Natururan und LEU und die Wiederanreicherung von abgereichertem Uran stehen vermutlich nur noch begrenzte Zeit zur Verfügung, da die überschüssigen Bestände aufgebraucht werden und die überschüssigen Anreicherungskapazitäten für die Wiederanreicherung nicht länger zur Verfügung stehen werden.

- **Lange Vorlaufzeiten für die Inbetriebnahme neuer Bergwerke**
 Die Einrichtung neuer Bergwerke erfordert Zeiträume von zehn und mehr Jahren; größere Produktionszuwächse können daher nicht auf die Schnelle erzielt werden. Zudem sind in den zehn Jahren noch nicht die Zeiten enthalten, die benötigt werden, um eine Lagerstätte genauer zu untersuchen, so dass aus einem Uran-Fund eine abbaubare Lagerstätte werden kann.

- **Neue Kapazitäten sind überwiegend nur auf Armerzlagerstätten möglich**
 Da die Uran-Vorräte in Reicherzlagerstätten sehr beschränkt sind, müsste jede nennenswerte Produktionssteigerung auf Armerzlagerstätten zurückgreifen, was zu sehr großen Dimensionen der Abbaubetriebe und enormen Umweltauswirkungen führen würde.
D. Uran-Angebot und Nachfrage

1. Uran-Lieferanten

Die folgenden Tabellen zeigen die Struktur der Uran-Versorgung nach Erzeugerländern (Tab. 18, Abb. 15, Abb. 16), Bergwerken (Tab. 19), Bergwerkstyp und Firmen (Tab. 21).

Tab. 18: Jährliche Uran-Produktion nach Ländern, 2003 [WNA HP]

<table>
<thead>
<tr>
<th>Rang</th>
<th>Land</th>
<th>t U</th>
<th>Anteil</th>
<th>Kumul. %</th>
<th>Anm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kanada</td>
<td>10.457</td>
<td>29,2%</td>
<td>29,2%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Australien</td>
<td>7.572</td>
<td>21,2%</td>
<td>50,4%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kasachstan</td>
<td>3.300</td>
<td>9,2%</td>
<td>59,6%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Russland</td>
<td>3.150</td>
<td>8,8%</td>
<td>68,4%</td>
<td>c)</td>
</tr>
<tr>
<td>5</td>
<td>Niger</td>
<td>3.143</td>
<td>8,8%</td>
<td>77,2%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Namibia</td>
<td>2.036</td>
<td>5,7%</td>
<td>82,9%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Usbekistan</td>
<td>1.770</td>
<td>4,9%</td>
<td>87,9%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>USA</td>
<td>846</td>
<td>2,4%</td>
<td>90,2%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ukraine</td>
<td>800</td>
<td>2,2%</td>
<td>92,5%</td>
<td>c)</td>
</tr>
<tr>
<td>10</td>
<td>Südafrika</td>
<td>758</td>
<td>2,1%</td>
<td>94,6%</td>
<td>a)</td>
</tr>
<tr>
<td>11</td>
<td>China, Festland</td>
<td>750</td>
<td>2,1%</td>
<td>96,7%</td>
<td>c)</td>
</tr>
<tr>
<td>12</td>
<td>Tschechien</td>
<td>345</td>
<td>1,0%</td>
<td>97,6%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Brasilien</td>
<td>310</td>
<td>0,9%</td>
<td>98,5%</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Indien</td>
<td>230</td>
<td>0,6%</td>
<td>99,1%</td>
<td>c)</td>
</tr>
<tr>
<td>15</td>
<td>Deutschland</td>
<td>150</td>
<td>0,4%</td>
<td>99,6%</td>
<td>b)</td>
</tr>
<tr>
<td>16</td>
<td>Rumänien</td>
<td>90</td>
<td>0,3%</td>
<td>99,8%</td>
<td>c)</td>
</tr>
<tr>
<td>17</td>
<td>Pakistan</td>
<td>45</td>
<td>0,1%</td>
<td>99,9%</td>
<td>c)</td>
</tr>
<tr>
<td>18</td>
<td>Argentinien</td>
<td>20</td>
<td>0,1%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welt Gesamt</td>
<td>35.772</td>
<td>100,0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Uran ist Nebenprodukt von Goldbergbau
b) Produktion aus Stilllegungsmaßnahmen
c) WNA-Schätzung

Abb. 15: Uran-Produktion nach Ländern, 2003

Uranproduktion 2003

35772 t U
Die kumulierte Prozentangabe in Tab. 18 zeigt, ebenso wie Abb. 15, dass z.B. die beiden wichtigsten Produktionsländer die Hälfte der Gesamtproduktion liefern, oder die wichtigsten fünf Produktionsländer mehr als drei Viertel der Produktion.
Tab. 20: Uran-Produktion nach Bergwerkstyp, 2003 [WNA HP]

<table>
<thead>
<tr>
<th>Rang</th>
<th>Typ</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Untertage (UG)</td>
<td>41%</td>
</tr>
<tr>
<td>2.</td>
<td>Tagebau (OP)</td>
<td>28%</td>
</tr>
<tr>
<td>3.</td>
<td>In-situ leach (ISL)</td>
<td>20%</td>
</tr>
<tr>
<td>4.</td>
<td>Nebenprodukt (BP)</td>
<td>11%</td>
</tr>
</tbody>
</table>

(wobei Olympic Dam in der Nebenprodukt- und nicht in der Untertage-Kategorie geführt wird)

Tab. 21: Uran-Produktion nach Firma, 2003 [WNA HP]

<table>
<thead>
<tr>
<th>Rang</th>
<th>Firma</th>
<th>mit Bergwerken in</th>
<th>t U</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cameco</td>
<td>Kanada, USA</td>
<td>7.194</td>
<td>20.1%</td>
</tr>
<tr>
<td>2.</td>
<td>Cogéma</td>
<td>Kanada, USA, Niger</td>
<td>4.738</td>
<td>13.2%</td>
</tr>
<tr>
<td>3.</td>
<td>ERA</td>
<td>Australien</td>
<td>4.295</td>
<td>12.0%</td>
</tr>
<tr>
<td>4.</td>
<td>KazAtomProm</td>
<td>Kasachstan</td>
<td>3.235</td>
<td>9.0%</td>
</tr>
<tr>
<td>5.</td>
<td>Priargunsky</td>
<td>Russland</td>
<td>2.800</td>
<td>7.8%</td>
</tr>
<tr>
<td>6.</td>
<td>WMC</td>
<td>Australien</td>
<td>2.693</td>
<td>7.5%</td>
</tr>
<tr>
<td>7.</td>
<td>Rössing</td>
<td>Namibia</td>
<td>2.036</td>
<td>5.7%</td>
</tr>
<tr>
<td>8.</td>
<td>Navoi</td>
<td>Usbekistan</td>
<td>1.770</td>
<td>4.9%</td>
</tr>
<tr>
<td></td>
<td>Andere</td>
<td></td>
<td>7.011</td>
<td>19.6%</td>
</tr>
<tr>
<td></td>
<td>Welt Gesamt</td>
<td></td>
<td>35.772</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
2. **Uran-Abnehmer**

Der jährliche Uran-Bedarf für Atomkraftwerke und die Atomstromproduktion sind in Tab. 22 und Abb. 17 nach Ländern aufgeführt. Der Atomstromanteil ist in den einzelnen Ländern sehr unterschiedlich: Einige wenige Länder, wie Litauen, Frankreich, Slowakei und Belgien sind in hohem Maße (größer als 50%) von Atomstrom abhängig. In den USA, dem Land mit dem absolut höchsten Atomstromverbrauch, macht der Atomstromanteil dagegen nur 20% aus; in den größten wirtschaftlich aufstrebenden Ländern China und Indien macht die Atomstromproduktion nur einen minimalen Anteil aus.

<table>
<thead>
<tr>
<th>Rang</th>
<th>Land</th>
<th>t U</th>
<th>TWh</th>
<th>Nuklear-anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>USA</td>
<td>22.800</td>
<td>799.0</td>
<td>20%</td>
</tr>
<tr>
<td>2.</td>
<td>Frankreich</td>
<td>8.570</td>
<td>449.0</td>
<td>77%</td>
</tr>
<tr>
<td>3.</td>
<td>Japan</td>
<td>8.380</td>
<td>230.0</td>
<td>25%</td>
</tr>
<tr>
<td>4.</td>
<td>Russland</td>
<td>5.100</td>
<td>148.6</td>
<td>16,5%</td>
</tr>
<tr>
<td>5.</td>
<td>Deutschland a)</td>
<td>3.200</td>
<td>165.1</td>
<td>29%</td>
</tr>
<tr>
<td>6.</td>
<td>Korea, Rep.</td>
<td>2.780</td>
<td>123.3</td>
<td>40%</td>
</tr>
<tr>
<td>7.</td>
<td>Ukraine</td>
<td>2.200</td>
<td>81.5</td>
<td>45,1%</td>
</tr>
<tr>
<td>8.</td>
<td>Großbritannien</td>
<td>1.760</td>
<td>88.6</td>
<td>25%</td>
</tr>
<tr>
<td>9.</td>
<td>Kanada</td>
<td>1.700</td>
<td>75.8</td>
<td>13%</td>
</tr>
<tr>
<td>10.</td>
<td>Schweden</td>
<td>1.600</td>
<td>65.0</td>
<td>49,2%</td>
</tr>
<tr>
<td>11.</td>
<td>Spanien</td>
<td>1.500</td>
<td>61.9</td>
<td>23,6%</td>
</tr>
<tr>
<td>12.</td>
<td>Belgien</td>
<td>1.150</td>
<td>47.4</td>
<td>56%</td>
</tr>
<tr>
<td>13.</td>
<td>China, Festld. c)</td>
<td>1.100</td>
<td>43.8</td>
<td>2,3%</td>
</tr>
<tr>
<td>14.</td>
<td>Bulgarien b)</td>
<td>840</td>
<td>17.3</td>
<td>40%</td>
</tr>
<tr>
<td>15.</td>
<td>China, Taiwan</td>
<td>830</td>
<td>37.4</td>
<td>21,5%</td>
</tr>
<tr>
<td>16.</td>
<td>Tschechien</td>
<td>745</td>
<td>25.9</td>
<td>30,5%</td>
</tr>
<tr>
<td>17.</td>
<td>Finnland</td>
<td>500</td>
<td>22.0</td>
<td>25,8%</td>
</tr>
<tr>
<td>18.</td>
<td>Slowakei</td>
<td>500</td>
<td>18.0</td>
<td>57,8%</td>
</tr>
<tr>
<td>19.</td>
<td>Indien</td>
<td>465</td>
<td>16.4</td>
<td>3,3%</td>
</tr>
<tr>
<td>20.</td>
<td>Brasilien</td>
<td>450</td>
<td>13.3</td>
<td>3,6%</td>
</tr>
<tr>
<td>21.</td>
<td>Schweiz</td>
<td>375</td>
<td>27.3</td>
<td>40%</td>
</tr>
<tr>
<td>22.</td>
<td>Ungarn</td>
<td>370</td>
<td>11.0</td>
<td>32,7%</td>
</tr>
<tr>
<td>23.</td>
<td>Litauen</td>
<td>310</td>
<td>15.5</td>
<td>80,6%</td>
</tr>
<tr>
<td>24.</td>
<td>Südafrika</td>
<td>280</td>
<td>13.3</td>
<td>6%</td>
</tr>
<tr>
<td>25.</td>
<td>Mexiko a)</td>
<td>230</td>
<td>10.5</td>
<td>4%</td>
</tr>
<tr>
<td>26.</td>
<td>Slowenien b)</td>
<td>230</td>
<td>5,3</td>
<td>43,4%</td>
</tr>
<tr>
<td>27.</td>
<td>Argentinien</td>
<td>120</td>
<td>7.0</td>
<td>9%</td>
</tr>
<tr>
<td>28.</td>
<td>Rumänien b)</td>
<td>100</td>
<td>4.5</td>
<td>9.3%</td>
</tr>
<tr>
<td>29.</td>
<td>Niederlande a)</td>
<td>95</td>
<td>3.8</td>
<td>4.5%</td>
</tr>
<tr>
<td>30.</td>
<td>Armenien</td>
<td>90</td>
<td>1.8</td>
<td>35%</td>
</tr>
<tr>
<td>31.</td>
<td>Pakistan a)</td>
<td>65</td>
<td>1.8</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

Welt Gesamt: 68.435 TWh, Nuklearanteil: 2.631,10%

a) Uran-Bedarf: Schätzung des Sekretariats
b) Stromproduktionszahlen aus [atw 10/2004]
c) Stromproduktionszahlen aus [Xinhua Sep. 1, 2004]
Tab. 23: Stromproduktion der Welt nach Energieträgern, 2002 [IEA 2005]

<table>
<thead>
<tr>
<th>Rang</th>
<th>Produktion aus</th>
<th>TWh</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kohle</td>
<td>6265,1</td>
<td>38,8%</td>
</tr>
<tr>
<td>2.</td>
<td>Gas</td>
<td>3064,88</td>
<td>19,0%</td>
</tr>
<tr>
<td>3.</td>
<td>Wasserkraft</td>
<td>2676,16</td>
<td>16,6%</td>
</tr>
<tr>
<td>4.</td>
<td>Atomkraft</td>
<td>2660,441</td>
<td>16,5%</td>
</tr>
<tr>
<td>5.</td>
<td>Öl</td>
<td>1160,8</td>
<td>7,2%</td>
</tr>
<tr>
<td>6.</td>
<td>Biomasse</td>
<td>139,286</td>
<td>0,86%</td>
</tr>
<tr>
<td>7.</td>
<td>Müll</td>
<td>55,908</td>
<td>0,35%</td>
</tr>
<tr>
<td>8.</td>
<td>Geothermie</td>
<td>52,236</td>
<td>0,32%</td>
</tr>
<tr>
<td>9.</td>
<td>Solar thermisch</td>
<td>0,569</td>
<td>0,0035%</td>
</tr>
<tr>
<td>10.</td>
<td>Solar Photovoltaik</td>
<td>0,412</td>
<td>0,0025%</td>
</tr>
<tr>
<td></td>
<td>Andere Quellen</td>
<td>54,354</td>
<td>0,34%</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>16129,164</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

IEA = International Energy Agency
Tab. 24: Bruttostrom-Erzeugung der Welt [IEA 2002]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2010</td>
</tr>
<tr>
<td>Kohle</td>
<td>5.989</td>
<td>7.143</td>
</tr>
<tr>
<td>Öl</td>
<td>1.241</td>
<td>1.348</td>
</tr>
<tr>
<td>Gas</td>
<td>2.676</td>
<td>4.947</td>
</tr>
<tr>
<td>Wasserstoff – Brennstoffzellen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Atomkraft</td>
<td>2.586</td>
<td>2.889</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>2.650</td>
<td>3.188</td>
</tr>
<tr>
<td>Andere erneuerbare</td>
<td>249</td>
<td>521</td>
</tr>
<tr>
<td>Gesamt</td>
<td>15.391</td>
<td>20.037</td>
</tr>
</tbody>
</table>

Der Beitrag der Atomenergie zur Primärenergieproduktion ist noch niedriger – etwas über sieben Prozent, wie in Tab. 25 und Tab. 26 zu sehen.

Tab. 25: Primärenergiebedarf der Welt [Mtoe] [IEA 2002]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Öl</td>
<td>2.450</td>
<td>3.604</td>
<td>4.272</td>
<td>5.769</td>
<td>1,6%</td>
</tr>
<tr>
<td>Kohle</td>
<td>1.449</td>
<td>2.355</td>
<td>2.702</td>
<td>3.606</td>
<td>1,4%</td>
</tr>
<tr>
<td>Gas</td>
<td>895</td>
<td>2.085</td>
<td>2.794</td>
<td>4.203</td>
<td>2,4%</td>
</tr>
<tr>
<td>Atomenergie</td>
<td>29</td>
<td>674</td>
<td>753</td>
<td>703</td>
<td>0,1%</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>104</td>
<td>228</td>
<td>274</td>
<td>366</td>
<td>1,6%</td>
</tr>
<tr>
<td>Andere erneuerbare</td>
<td>73</td>
<td>233</td>
<td>336</td>
<td>618</td>
<td>3,3%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>4.999</td>
<td>9.179</td>
<td>11.132</td>
<td>15.267</td>
<td>1,7%</td>
</tr>
</tbody>
</table>

Mtoe = Mio. t Öl äquivalent

Tab. 26: Anteil der Atomenergie am Primärenergiebedarf der Welt [IEA 2002]

<table>
<thead>
<tr>
<th></th>
<th>1971</th>
<th>2000</th>
<th>2010</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomenergieanteil</td>
<td>0,6%</td>
<td>7,3%</td>
<td>6,8%</td>
<td>4,6%</td>
</tr>
</tbody>
</table>
3. Uran-Handel

Tab. 27 zeigt, wohin das Uran geht, das in den beiden wichtigsten Produzentenländern Kanada und Australien gewonnen wird. Wichtige Abnehmerländer sind, wenig überraschend, die größten Verbraucherländer USA, Frankreich und Japan. Tab. 28 zeigt die Herkunftsländer für das Uran, das an die Energieversorger in den beiden großen Verbrauchsregionen USA und EU ausgeliefert wurde.

Tab. 27: Bestimmungsländer für Uran-Exporte aus Kanada und Australien [t U]

<table>
<thead>
<tr>
<th>Bestimmungsland</th>
<th>Herkunftsland</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentinien</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgien</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnland</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankreich</td>
<td>4.385</td>
<td>748</td>
<td></td>
</tr>
<tr>
<td>Deutschland</td>
<td>42</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>1.366</td>
<td>1.982</td>
<td></td>
</tr>
<tr>
<td>Mexiko</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Südkorea</td>
<td>217</td>
<td>789</td>
<td></td>
</tr>
<tr>
<td>Spanien</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweden</td>
<td>73</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Großbritannien</td>
<td>88</td>
<td>738</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>4.683</td>
<td>3.027</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>11.534</td>
<td>8.028</td>
<td></td>
</tr>
</tbody>
</table>

a) Canadian Uranium Exports, by Country of Final Destination [NRCAN 2004]
b) Countries to which Australian Uranium was supplied [ASNO AR 2004]

Tab. 28: Herkunftsländer von Uran, das an Energieversorger in den USA und der EU ausgeliefert wurde [t U]

<table>
<thead>
<tr>
<th>Herkunftsland</th>
<th>Ziel</th>
<th>2004</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien</td>
<td>USA</td>
<td>4.484</td>
<td>2.624</td>
</tr>
<tr>
<td></td>
<td>EU</td>
<td>6.334</td>
<td>3.280</td>
</tr>
<tr>
<td>Kanada</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tschechien</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td></td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>Kasachstan</td>
<td></td>
<td>1.620</td>
<td>984</td>
</tr>
<tr>
<td>Usbekistan</td>
<td></td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>Namibia</td>
<td></td>
<td>1.069</td>
<td>656</td>
</tr>
<tr>
<td>Südafrika</td>
<td></td>
<td>804</td>
<td></td>
</tr>
<tr>
<td>Niger</td>
<td></td>
<td>0</td>
<td>2.460</td>
</tr>
<tr>
<td>Russland</td>
<td></td>
<td>3.973</td>
<td>3.444</td>
</tr>
<tr>
<td>Ukraine</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Großbritannien</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td>4.747</td>
<td></td>
</tr>
<tr>
<td>Andere + unbestimmt</td>
<td></td>
<td>492</td>
<td></td>
</tr>
<tr>
<td>Zwischensumme W</td>
<td></td>
<td>738</td>
<td></td>
</tr>
<tr>
<td>Wiedergereicherte tails (Russland)</td>
<td></td>
<td>984</td>
<td></td>
</tr>
<tr>
<td>Gestrecktes HEU</td>
<td></td>
<td>1.312</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>24.654</td>
<td>16.400</td>
</tr>
</tbody>
</table>

W = zurückgehalten

a) Uranium Purchased by Owners and Operators of U.S. Civilian Nuclear Power Reactors [DOE EIA 2005], umgerechnet (1000 lbs U₃O₈ = 0.3846 t U)
b) Origins of natural uranium delivered to European Union utilities [ESA AR 2003], nur ungefähre Werte, berechnet aus dem %-Anteil, keine Aufteilung unter den EU-Mitgliedsländern angegeben
Nachfrageszenarien

- **Niedriger Bedarf**: Mittleres Wirtschaftswachstum; Ausstieg aus der Atomenergie
- **Mittlerer Bedarf**: Mittleres Wirtschaftswachstum; ständige aber mäßige Zunahme der Atomenergie
- **Hoher Bedarf**: Hohes Wirtschaftswachstum; bedeutende Zunahme der Atomenergie

Zu Illustrationszwecken wurde ein weiteres Szenario dazu genommen, bei dem die Atomenergie so stark ausgebaut wird, dass sie 2050 sämtliche Stromerzeugung aus fossilen Quellen ersetzen kann – mit dem Ziel, den Treibhauseffekt zu bekämpfen (ohne tiefer in die Fragestellung einzusteigen, ob das überhaupt funktionieren würde). Da die Atomenergie zurzeit einen Anteil von 16,5% an der Stromproduktion der Welt hat, müsste die Stromerzeugung aus Atomenergie um den Faktor fünf erhöht werden, um den derzeitigen Anteil der fossilen Energieträger von 65% an der Stromproduktion zu ersetzen. In Anbetracht des zu erwartenden Anstiegs des Gesamtstromverbrauchs müsste die Stromerzeugung aus Atomenergie allerdings noch viel mehr gesteigert werden, z.B. etwa 15-fach, wenn man eine Verdreifachung des Strombedarfs bis 2050 annimmt, wie aus der Tab. 24 extrapoliert werden kann. Wir definieren also das zusätzliche Szenario wie folgt:

- **Ultimater Bedarf**: Die Atomenergie-Kapazitäten würden zwischen 2010 und 2050 soweit hochgefahren, dass die gesamte Stromerzeugung aus fossilen Energieträgern bei einem verdreifachten Verbrauch ersetzt werden würde

In Anbetracht der derzeitigen Zahl von etwa 440 Atomkraftwerken müssten dann also 6.160 neue Atomkraftwerke gebaut werden, das wären 154 pro Jahr oder drei pro Woche – und das ohne etwa notwendig werdenden Ersatz für alte Kraftwerke zu berücksichtigen.

Dennoch würde auch in diesem extremen Fall, dass alle Elektrizität aus fossilen Energieträgern durch Atomenergie ersetzt werden sollte, der Großteil der Primärenergie immer noch aus fossilen Energieträgern gedeckt, da selbst in diesem Fall die Atomenergie nicht mehr als 35% des Primärenergiebedarfs decken würde.

Tab. 29: Übersicht über die Szenarien für den Uran-Bedarf 2000 - 2050

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedrig</td>
<td>52.000</td>
<td>-16%</td>
<td>3.575.973</td>
</tr>
<tr>
<td>Mittel</td>
<td>177.000</td>
<td>+187%</td>
<td>5.528.558</td>
</tr>
<tr>
<td>Hoch</td>
<td>283.000</td>
<td>+359%</td>
<td>7.622.035</td>
</tr>
<tr>
<td>Ultimativ</td>
<td>924.000</td>
<td>+1400%</td>
<td>21.256.965</td>
</tr>
</tbody>
</table>

a) basierend auf 61.600 t U im Jahre 2000

Eine Reihe von Faktoren könnte einen Einfluss auf den zukünftigen Bedarf haben:

- **Höherer Brennstoffabbrand**

Atomkraftwerke setzen zunehmend Brennstoff mit höheren Anreicherungsgraden ein, und der Brennstoff verbleibt länger im Reaktor und produziert mehr Strom pro Einheit Brennstoff. Der Natururan-Bedarf pro erzeugter Einheit Elektrizität ändert sich dadurch zwar kaum, aber der verbrauchte Brennstoff ist dann für eine Wiederaufbereitung noch weniger geeignet, da er mehr
unerwünschte Isotope enthält. Die Abtrennung von Uran und Plutonium aus den abgebrannten Brennstäben würde also schwieriger (siehe IAEA 1993 für Einzelheiten dazu).

- **Ausstieg aus der Atomenergienutzung in Schweden und Deutschland**

- **Pläne für eine Erweiterung der Atomenergienutzung in China**
 China hat angekündigt, dass es in den nächsten 15 Jahren 40 neue Atomkraftwerke bauen will, eine starke Zunahme gegenüber früheren Plänen [BBC News April 7, 2005].

- **Schnelle Brutreaktoren?**
 Die Schnelle-Brüter-Technologie versprach einst, die Reichweite der Uran-Vorräte um einen Faktor bis zu 60 zu verlängern. Technische Probleme haben jedoch zur Stilllegung sämtlicher Prototyp-Reaktoren geführt, bis auf einen in Russland. Russland und China betrachten diese Technologie dennoch immer noch als mögliche Option zur Deckung ihres Strombedarfs.

5. **Reichweite der Uran-Vorräte**

Für eine zweite Näherung ziehen wir die oben definierten Nachfrage-Szenarien hinzu. Abb. 18 bis Abb. 21 zeigen die Reichweite der bekannten Vorräte für die Szenarien mit niedrigem, mittlerem, hohem und ultimativerm Bedarf. In allen Fällen wären die Beiträge aus Lagerbeständen, Wiederanreicherung von abgereichertem Uran und Strecken von HEU bis 2023 erschöpft; nur die Beiträge von MOX-Brennstoff und Wiederaufarbeitungsuran würden auf gleichbleibendem niedrigen Niveau weitergehen. Der Beitrag aus aktuellem Bergbau müsste daher also bis 2023 selbst im Szenario mit niedrigem Bedarf verdoppelt werden, um die Nachfrage decken zu können. Bei allen anderen Szenarien müsste die Produktion aus Bergwerken noch viel stärker ansteigen.

Es ist offensichtlich, dass die bekannten Uran-Vorräte die Nachfrage nur in dem Szenario mit niedrigem Bedarf decken könnten – das ist der Fall, der einen Ausstieg aus der Atomenergie
beinhaltet. Im Szenario mit mittlerem Bedarf wären die Vorräte schon 2048 erschöpft, zwei Jahre bevor das Szenario überhaupt endet. Im Szenario mit hohem Bedarf wären die Vorräte schon 2040 zu Ende und mit ultimativen Bedarf bereits 2026. Zu diesem Zeitpunkt wäre die in letzterem Fall angenommene Umstellung von fossil gefeuerten Kraftwerken auf Atomkraftwerke noch nicht einmal zur Hälfte durchgeführt.

Abb. 18: Reichweite der Uran-Vorräte, Niedriger Bedarfsfall
Abb. 19: Reichweite der Uran-Vorräte, Mittlerer Bedarfsfall

Abb. 20: Reichweite der Uran-Vorräte, Hoher Bedarfsfall
Abb. 21: Reichweite der Uran-Vorräte, Ultimativer Bedarfsfall

Abb. 22: Uran-Bedarf und Produktionskapazitäten

A-II: Produktionskapazität von bestehenden und beschlossenen Produktionszentren, getragen von Vorräten der Kategorien RAR and EAR-I
B-II: Produktionskapazität von bestehenden, beschlossenen, geplanten und angedachten Produktionszentren, getragen von Vorräten der Kategorien RAR and EAR-I
Tab. 30 erweitert die Kapazitätsbetrachtungen auf alle Anlagen, die für die Brennstoffherstellung benötigt werden, wenn auch nur für die derzeitigen Kapazitäten (siehe Tab. 30). Es wird auch die mit der Verwertung der sekundären Vorräte verbundene Nachfrage nach Kapazitäten berücksichtigt. Die Aufteilung der aktuellen Nachfrage auf die einzelnen sekundären Vorräte stellt mangels Daten aber nur eine grobe Schätzung dar. Weiterhin wurde die gesamte Brennstoffproduktion dem LWR-Brennstoff zugeschlagen, da eine Produktionsziffer für HWR-Brennstoff nicht ausfindig gemacht werden konnte.

Tab. 30: Kapazitätsauslastung bei den Schritten der Nuklearbrennstoff-Herstellung 2003

<table>
<thead>
<tr>
<th>Lieferer 2003 [t Unat equiv.]</th>
<th>Abbau und Aufbereitung [t U als U\textsubscript{2}O\textsubscript{3}]</th>
<th>Konversion [t U als U\textsubscript{2}O\textsubscript{3}]</th>
<th>Anreicherung [Mio. SWU]</th>
<th>HEU Misch. [t U als HEU]</th>
<th>Brennelement-Fabrik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zu-</td>
<td>Tails zu Unat</td>
<td>Unat zu LEU</td>
<td>Zwi.-summe</td>
<td>MOX [t HM]</td>
</tr>
<tr>
<td>MOX</td>
<td>2400</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RepU</td>
<td>1500</td>
<td>0 1500 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Wiederanr.</td>
<td>4850</td>
<td>0 0 3.2 2.7</td>
<td>5.9 0</td>
<td>0 591.7 0</td>
<td>0 0</td>
</tr>
<tr>
<td>HEU strecken</td>
<td>8300</td>
<td>0 0 6.5 6.5</td>
<td>0 0 0 0</td>
<td>28.2</td>
<td>1134.6 0</td>
</tr>
<tr>
<td>LEU Lagerb.</td>
<td>3653</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 445.7 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Unat Lagerb.</td>
<td>6494</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 792.3 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Bergbauprod.</td>
<td>35772</td>
<td>35772 35772</td>
<td>0 0 0 0</td>
<td>20.0 20.0</td>
<td>0 4364.2 0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>63969</td>
<td>35772 40925</td>
<td>6.5 3.2</td>
<td>27.2 36.8</td>
<td>28.2 7511.4 330.5</td>
</tr>
<tr>
<td>Kapazität</td>
<td>460000</td>
<td>86553 53.5</td>
<td>30.0 13819.0</td>
<td>460.0 3550</td>
<td></td>
</tr>
<tr>
<td>Auslastungsfaktor</td>
<td>77.8% 58.9%</td>
<td>69.0%</td>
<td>93.9% 54.4%</td>
<td>71.8% ?</td>
<td></td>
</tr>
<tr>
<td>Skalierfaktor</td>
<td>1 1 7e-4 6.6e-4</td>
<td>5.6e-4</td>
<td>0.0030 0.122</td>
<td>0.1377 1</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 23: Kapazitätsauslastung bei den Schritten der Nuklearbrennstoff-Herstellung 2003 [t Unat äquiv.]

Auslastung der Produktionskapazitäten 2003
Abb. 23 zeigt das Ergebnis als Diagramm. Hier sind die Kapazitäten zur besseren Vergleichbarkeit in Tonnen Unat-Äquivalent angegeben. Es zeigt sich, dass die Kapazitätsreserven beim Uran-Bergbau und bei der Uranerz-Aufbereitung von allen Verarbeitungsschritten am geringsten sind. Wenn also die Nachfrage steigen sollte, dann müssten die Kapazitäten für Bergbau und Erzaufbereitung als erstes erweitert werden.

6. **Ungleichgewichte zwischen Angebot und Nachfrage**

Abb. 24 zeigt Angebot und Nachfrage für Uran nach Ländern. Es ist zu sehen, dass kein Verbraucherland außer Kanada und Südafrika seinen Bedarf mit eigener Produktion decken kann.

Abb. 24: Uran-Bedarf für Atomkraftwerke und heimische Uran-Produktion, 2003, nach Ländern

Wenn man dazu noch Tab. 1, S. 7 heranzieht, wird außerdem deutlich, dass die meisten Großverbraucher-Länder außer den USA und Russland, wenn überhaupt, nur in geringem Umfang Uran-Lagerstätten besitzen. Nur sieben Länder produzieren derzeit mehr Uran als sie für ihren Eigenbedarf benötigen, sofern sie überhaupt einen haben (siehe auch Tab. 31).
Tab. 31: Länder, in denen 2003 die Uran-Produktion den heimischen Bedarf überstieg

<table>
<thead>
<tr>
<th>Rang</th>
<th>Land</th>
<th>Produktionsüberschuß [t U]</th>
<th>von den Firmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kanada</td>
<td>8.757</td>
<td>Cameco, Cogéma, …</td>
</tr>
<tr>
<td>2.</td>
<td>Australien</td>
<td>7.572</td>
<td>WMC, ERA</td>
</tr>
<tr>
<td>3.</td>
<td>Kasachstan</td>
<td>3.300</td>
<td>Kazatomprom</td>
</tr>
<tr>
<td>4.</td>
<td>Niger</td>
<td>3.143</td>
<td>Cogéma</td>
</tr>
<tr>
<td>5.</td>
<td>Namibia</td>
<td>2.036</td>
<td>Rössing</td>
</tr>
<tr>
<td>6.</td>
<td>Usbekistan</td>
<td>1.770</td>
<td>Navoi</td>
</tr>
<tr>
<td>7.</td>
<td>Südafrika</td>
<td>478</td>
<td>Anglogold Ashanti</td>
</tr>
</tbody>
</table>

Im Folgenden wird die Situation in einigen Ländern etwas näher beleuchtet.

Russland

Die überraschende Tatsache, dass Russland mehr SWU für die Anreicherung von importiertem abgereichertem Uran zur Herstellung der Zumischkomponente für das Strecken von HEU aufwendet, als mit dem Einsatz des Mischprodukts dann wiedergewonnen werden kann (siehe Abb. 6, S. 17) zeigt, dass Russland massive Probleme bei der Beschaffung von Natururan hat. Unter Einsatz überschüssiger Anreicherungskapazitäten „erzeugt“ Russland aus importiertem abgereichertem Uran dringend benötigte sekundäre Uran-Quellen und vergibt dafür die Gelegenheit, die in dem HEU steckende Anreicherungsleistung zurückzugewinnen.

Wird Russland große Uran-Bergwerke in Südjakutien errichten?

Funktionäre der Firma TVEL sagten, dass die Uran-Produktion in Russland „nach 2010 durch die Anlage neuer Uran-Bergwerke sichergestellt werden soll“. TVEL-Vizepräsident Golovinsky sagte, „neue große Uran-Bergbau-Unternehmen könnten auf der Grundlage einiger großer Lagerstätten in Südjakutien entstehen. Das erste Uran aus diesen Bergwerken könnte 2015 geliefert werden“, fügte er hinzu. Es sei aber klar, merkte Golovinsky an, dass diese Lagerstätten, die für 50 Jahre ausreichen würden, nicht ohne Unterstützung von Seiten der Regierung ausgebaut werden könnten“ [Itar-Tass 25.3.2005].
Die fraglichen Lagerstätten liegen im Aldansky Uranerz-Bezirk. Die Erze liegen in Tiefen von mehr als 200-500 Meter, die produktivsten Zonen liegen überwiegend bei Tiefen von einem Kilometer und mehr. Der mittlere Uran-Gehalt ist 0,1 bis 0,15%. Außerdem enthält das Erz zwischen einem und einigen parts per million Gold. Diese Vorräte umfassen mehr als 200.000 Tonnen Uran in der Kostenkategorie 80 bis 130 US$/kg Uran. Sie sind nicht in der offiziellen Statistik der Uran-Vorräte und damit auch nicht in Tab. 1 enthalten [IAEA 2001b], [IAEA 2004b].

Indien, China

7. Handelsbeschränkungen

a. Exportbeschränkungen
(zur Sicherstellung einer friedlichen Nutzung des Urans)

- zwingen Indien, marginale Lagerstätten abzubauen

Indien sollte eine politische Lösung finden, um auf dem Weltmarkt Zugang zu neuester Reaktortechnologie und Uran zu erhalten, auch wenn es auf seiner bisherigen Position zum Atomwaffensperrvertrag (NPT) beharrt, sagte der scheidende Vorsitzende des Nuclear Fuel Complex (NFC), C. Ganguly, der zum Chef Nuclear Fuel Cycle (NFC) bei der Internationalen Atomenergiebehörde IAEÖ in Wien ernannt wurde. Dr. Ganguly […] hat auf die Notwendigkeit hingewiesen, eine politische Lösung auf dem Wege der Diplomatie zu finden, falls Indien sein Atomstromprogramm in großem Maßstab ausweiten wolle. „Lieber

- **…verhindern den Uran-Export von Australien nach China**

- **…behindern die Wiederanreicherung von Uran in Russland**
 Die Uran produzierenden Länder Australien und Kanada verlangen, dass abgereichertes Uran, das bei der Anreicherung oder Wiederanreicherung von Uran aus ihren Ländern anfällt, unter den Schutz der IAEA-Bestimmungen zur Sicherstellung einer friedlichen Nutzung fallen muss. Russland ist jedoch nicht gewillt, sich dieser Anforderung zu beugen. Urenco und Eurodif können daher kein abgereichertes Uran nach Russland zur Wiederanreicherung schicken, das bei der Anreicherung von kanadischem oder ausländischem Uran angefallen ist, wenn das in Russland anfallende abgereicherte Uran dort verbleibt. Verhandlungen in dieser Sache sind zwischen Russland, Australien, Kanada und Euratom im Gange [UI 2001].
 Im Sommer 2003 wurde eine vorläufige Vereinbarung über abgereichertes Uran geschlossen, das aus der Anreicherung von kanadischem Uran stammt. Diese Vereinbarung ist „zeitlich begrenzt, bis die sich im Gänge befindlichen politischen Konsultationen zu einem definitiven Ergebnis führen“ [ESA AR 2003].
 Die offensichtliche Option, dass in Russland anfallende abgereicherte Uran wieder zurückzunehmen, wird offensichtlich nicht in Betracht gezogen, da dies die wirtschaftliche Basis für die Wiederanreicherung in Russland untergraben würde, nämlich die vermiedenen Entsorgungskosten für die westlichen Anreicherungsfirmen Eurodif und Urenco [Diehl 2004].

b. Importbeschränkungen

Beschränkungen für Uran-Importe wurden beispielsweise verhängt von den USA, um ihre heimische Uran-Industrie zu schützen oder von der EU, um nicht von einzelnen Lieferanten zu abhängig zu werden. Diese Beschränkungen begrenzen letztlich die russischen Uran-Exporte und verhindern, dass die überschüssigen russischen Anreicherungskapazitäten für normale Anreicherungszwecke eingesetzt werden können.

In Anbetracht der drohenden Uran-Versorgungskrise Russlands ist zu erwarten, dass die Importbeschränkungen für Uran aus Russland schon bald ihre Bedeutung verlieren werden, da es keine russischen Uran-Exporte mehr geben wird.

Bei Anreicherungs-Dienstleistungen sieht die Sache dagegen anders aus: Während Russland sich mit einer massiven Knappheit bei den Uran-Vorräten konfrontiert sieht, hat es riesige überschüssige Anreicherungskapazitäten, die noch aus den Zeiten des Kalten Krieges stammen (allein mehr als sieben Mio. SWU werden derzeit jährlich für die Wiederanreicherung von importiertem abgereicherten Uran verwendet, während weitere Kapazitäten für die Wiederanreicherung eigenen Materials benutzt werden). Die Anreicherungskapazitäten in anderen Ländern werden konstant erweitert (wie in Urencos Anlagen in Großbritannien, den Niederlanden und Deutschland), und alte Diffusionsanlagen sollen durch Zentrifugentechnologie ersetzt werden (wie in Frankreich und den USA), aber Russland kann wegen Handelsbeschränkungen nicht einmal seine überschüssigen Zentrifugengesellschaften auf dem Weltmarkt verkaufen. Russland benutzt die Übergangszeit daher zur Wiederanreicherung von abgereichertem Uran, kann dafür aber vermutlich nicht den Marktpreis für SWU berechnen, sondern nur die Betriebskosten (siehe S. 18).

8. Uran-Preis

Wenn man annimmt, dass die Erzeugungskosten nur ein Drittel der gesamten Stromkosten ausmachen, würde der Uran-Preis nur 1,6% der tatsächlich von den Abnehmern bezahlten Stromkosten betragen. Wenn sich also der Uran-Preis verdoppelt, würden die Strompreise gerade einmal um 1,6% steigen. Wenn man weiter berücksichtigt, dass nur ein Teil der von einem Versorgungsunternehmen gelieferten Elektrizität aus Atomenergie stammt, würden die Auswirkungen auf den von den Abnehmern bezahlten Strompreis weiter abnehmen, je nach dem Energiemix des jeweiligen Versorgungsunternehmens.

Abb. 25: Zusammensetzung der Stromerzeugungskosten aus Atomenergie

Kostenstruktur von Strom aus Kernenergie
E. Schlussfolgerungen

- **Bekannte Uran-Vorräte können steigenden Bedarf nicht decken**
 - Sekundäre Quellen, die derzeit fast die Hälfte des Uran-Bedarfs decken, haben nur einen Anteil von etwa fünf Prozent an den Gesamtvorräten und werden spätestens 2023 erschöpft sein.
 - Die bekannten Uran-Vorräte reichen nur für ein Szenario mit niedrigem Bedarf aus, bei dem der Verbrauch bis 2040 im Wesentlichen konstant bleibt und dann abnimmt.

- **Uran-Bergbau-Kapazitäten reichen nicht aus**
 - Die Uran-Produktion aus Bergbau muss bis 2023 verdoppelt werden, allein schon um den derzeitigen Bedarf weiter zu decken, da die sekundären Quellen versiegen werden. Die bestehenden Kapazitäten können diesen Bedarf jedoch nicht decken, und nur an sehr wenigen Standorten sind die Vorarbeiten so weit, dass neue Kapazitäten eingerichtet werden können. Die Zeiten für die Inbetriebnahme neuer Bergwerke sind sehr lang.
 - Jede Verbrauchssteigerung würde eine weitere massive Aufstockung der Abbaukapazitäten und – früher oder später – der folgenden Verarbeitungsschritte für die Brennstoff-Herstellung erfordern.

- **Zunahme der Umweltfolgen**
 - Nur ein kleiner Teil aller Uran-Vorräte liegt in Reicherz-Lagerstätten. Daher muss der Abbau zunehmend auf Armerzen durchgeführt werden, was in der Regel weitreichende Umweltfolgen nach sich zieht.

- **Regionale Ungleichgewichte bei Angebot und Nachfrage**
 - Die meisten derzeitigen und potentiellen größeren Abnehmerländer verfügen nur über sehr geringe eigene Uran-Vorräte und werden daher auf Uran-Importe angewiesen sein, während gerade einmal sieben Länder genug Uran produzieren, um überhaupt welches exportieren zu können.
 - Ausgesprochen prekär ist die Situation von Russland, das sich innerhalb eines Jahrzehnts einer schweren Versorgungskrise gegenübersieht. Diese Krise wird auch Auswirkungen für die EU haben, die derzeit stark abhängig ist von Uran-Lieferungen aus Russland.
 - Die Versorgungsprobleme werden dramatisch zunehmen, wenn Indien und China tatsächlich auf eine Ausweitung der Atomenergie setzen – beide besitzen nur minimale Uran-Vorräte.
 - Außerdem ist die Sicherstellung einer friedlichen Nutzung des Urans bei etwaigen Uran-Exporten nach Russland, Indien und China in Gefahr.

- **Steigende Kosten**
 - Falls keine weiteren Reicherzlagerstätten gefunden werden, muss mit einem beträchtlichen Anstieg der Uran-Abbaukosten gerechnet werden.
 - In Anbetracht der Erfahrungen mit früheren Uran-Bergwerken ist zu befürchten, dass der Abbau von Armerzlagerstätten neue Altlasten erzeugen wird, die dann mit
Steuergeldern saniert werden müssen, zu Kosten, die den Wert des abgebauten Urans erreichen können.

- **Vorgeschlagene Alternativen hochproblematisch**
 - Der Abbau von Vorkommen mit sehr geringen Uran-Gehalten, wie z.B. Schwarzschiefer würde außerordentliche Kosten und Umweltfolgen verursachen, könnte aber auch nur eine zeitweise Entlastung bringen.
 - Schnelle Brutreaktoren (wie für Russland und China vorgeschlagen) und Thorium-Reaktoren (wie für China und Indien vorgeschlagen) bringen unbeherrschbare neue Risiken mit sich und haben in der Praxis versagt. Die Thorium-Vorräte liegen zudem in noch niedriggradigeren Lagerstätten als die Uran-Vorräte, und sie sind genauso begrenzt wie diese.
F. Glossar

1. Begriffe und Abkürzungen

(ein * zeigt einen gesonderten Eintrag für einen Begriff an)

Abgereichertes Uran (depleted uranium - DU): Uran (in jeglicher chemischen Form), bei dem die Konzentration des Isotops U-235 niedriger ist als in *Natururan (< 0,711 Gewichts-%)

Angereichertes Uran: Uran (in jeglicher chemischen Form) bei dem die Konzentration des Isotops U-235 höher ist als bei *Natururan (> 0,711 Gewichts-%)

Anreicherung: Prozess zur Erhöhung der Konzentration des spaltbaren Isotops U-235 in Uran, gewöhnlich mit physikalischen Prozessen, wie Gasdiffusion oder Gaszentrifugierung; erzeugt einen Produktstrom mit *angereichertem Uran und einen Nebenproduktstrom mit *abgereichertem Uran (tails)

Assay: Konzentration eines Isotops (U-235, falls nichts anderes angegeben) in Uran, im Allgemeinen angegeben in Gewichts-%

DOE: U.S. Department of Energy

DU: depleted uranium = *abgereichertes Uran

EAR I: estimated additional resources – Category I

EPA: US Environment Protection Agency – amerikanische Umweltbehörde

ESA: Euratom Supply Agency

Feed: Uran, das als *UF₆ in eine Anreicherungsanlage eingespeist wird

HEU: highly-enriched-uranium, hoch-angereichertes Uran: Uran mit einer U-235-Konzentration von 20% oder mehr (nur in Atomwaffen oder Forschungsreaktoren benötigt)

HLW: high-level radioactive waste, hochaktiver radioaktiver Abfall

In-situ leaching (ISL): auch bekannt als Lösungsbergbau, Gewinnung von Uran aus einer wasserdurchlässigen unterirdischen Lagerstätte mittels chemischer Lösung (alkalisch oder sauer), ohne das Erz aus dem Untergrund zu holen

IAEA: International Atomic Energy Agency – Internationale Atomenergie Behörde, Wien

IEA: OECD International Energy Agency, Paris

ISL: *in-situ leaching

kg SWU: = *SWU
Konversion: Umwandlung von Uran aus einer chemischen Form in eine andere (*U₃O₈ zu *UF₆, falls nichts anderes angegeben)

LEU: lowly-enriched-uranium, niedrig-angereichertes Uran, Uran mit einem U-235-Gehalt von > 0,711% und < 20% (wie z.B. für den Gebrauch in Leichtwasserreaktoren - *LWR benötigt)

LLW: low-level radioactive waste, schwach aktiver Atommüll

Lösungsbergbau: *in-situ leaching

LWR: Leichtwasserreaktor, wie Siedewasserreaktor oder Druckwasserreaktor, benötigt als Brennstoff *angereichertes Uran mit einem U-235-Gehalt von 3-5%

Mischoxid-Brennstoff (MOX): Brennstoff für *LWR, bei dem ein Teil des U-235 durch Plutonium ersetzt ist

Mtoe: Mio. Tonnen Öl-Äquivalent (Energieeinheit)

Natururan: Uran (in jeglicher chemischer Form) mit natürlicher Isotopen-Zusammensetzung, enthält 0,711 Gewichts-% (entspricht 0,72 Atom-%) U-235

„naturäquivalentes“ Uran: hier benutzter Ausdruck für Uran mit natürlicher Konzentration an U-235, das durch *Wiederaufarbeitung von *abgereichertem Uran gewonnen wurde; die Konzentration des Isotops U-234 ist niedriger als bei echtem *Natururan; wird auch „pseudo-natürliches“ Uran genannt.

NEA: OECD Nuclear Energy Agency, Paris

NPT: Nuclear Non-Proliferation Treaty (Atomwaffensperrvertrag)

NRC: U.S. Nuclear Regulatory Commission

RAR: reasonably assured resources

RepU: *Wiederaufarbeitungsuran

Rosatom: Russische Atomenergiebehörde (vormals Minatom)

Sekundäre tails: *tails, die bei der *Wiederaufarbeitung anfallen

Strecken (downblending) von HEU: Mischung von *HEU mit einer *Zumischkomponente, um *LEU für Kernbrennstoff zu erhalten

SWU: separative work unit, Einheit für die *Anreicherungs-Arbeit, auch bezeichnet als “kg SWU”

t SWU: 1000 *SWU

t U: Tonnen Uran, die in einer Verbindung enthalten sind

tailings: *Uranerz-Aufbereitungsrückstände; nicht zu verwechseln mit *tails
tails: Nebenprodukt der *Anreicherung von Uran: *abgereichertes Uran in der Form von *UF₆; nicht zu verwechseln mit *tailings

tails upgrading: *Wiederanreicherung von *tails

TWh: Terawattstunde (Energieeinheit), 1 TWh = 10¹² Wh = 10⁹ kWh = 1 Mrd. kWh

Uranhexafluorid (UF₆): chemische Form von Uran, wie sie für die Anreicherung benötigt wird; bei Umgebungstemperatur ein kristalliner Feststoff, der oberhalb von 56°C verdampft

Uranerz-Aufbereitungsrückstände (tailings): sand- bzw. schlammförmiger Abfall aus der Gewinnung von Uran aus Erz, enthält noch 85% der im Erz ursprünglich vorhandenen Radioaktivität

Uran-Konzentrat (UOC): verkaufsfähiges Endprodukt der Uran-Gewinnung aus Erzen, enthält mindestens 90% U₃O₈; besteht aus Uran-Verbindungen wie Ammoniumdiuranat, oder Natriumdiuranat, enthält noch Verunreinigungen; bekannt als “Yellow Cake”, obwohl nicht alle Verbindungen von gelber Farbe sind

Udep: *abgereichertes Uran

Uenr: *angereichertes Uran

Unat: *Natururan

Uneq: *„naturäquivalentes“ Uran

Urep: *Wiederaufarbeitungsuran

UF₆: *Uranhexafluorid

UO₂: Chemische Form von Uran, wie sie in Brennstäben für *LWR benötigt wird

U₃O₈: Chemische Form von Uran, wie sie bei der Gewinnung aus Erz anfällt (siehe *Uran-Konzentrat)

UOC: *Uran-Konzentrat

USEC: U.S. Enrichment Corporation

Wiederaufbehandlung (re-enrichment, tails upgrading): Verwendung von *abgereichertem Uran statt *Natururan zum Einspeisen in die Anreicherungsanlage; nicht zu verwechseln mit dem Recycling von Uran aus abgebrannten Brennelementen (*Wiederaufarbeitungsuran).

Wiederaufarbeitungsuran (RepU, Urep): Uran, das durch Wiederaufarbeitung aus abgebrannten Brennelementen zurückgewonnen wurde, kann in neuen Brennstoff recycelt werden, enthält unerwünschte Beimengungen des Isotops U-236 (ein Neutronenabsorber)

Yellow cake: *Uran-Konzentrat

Zumischkomponente (blendstock): Uran (*LEU, *Unat, oder *DU), das für das *Strecken von *HEU benutzt wird
2. Umrechnungsfaktoren

Tab. 32: Uran-Gehalte

<table>
<thead>
<tr>
<th>1 lb U₃O₈</th>
<th>0,385 kg U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mio. lbs U₃O₈</td>
<td>385 t U</td>
</tr>
<tr>
<td>1 short ton U₃O₈</td>
<td>0,77 t U</td>
</tr>
<tr>
<td>1 t U₃O₈</td>
<td>0,848 t U</td>
</tr>
<tr>
<td>1 t UF₆</td>
<td>0,676 t U</td>
</tr>
<tr>
<td>1 t UO₂</td>
<td>0,8815 t U</td>
</tr>
</tbody>
</table>

| 1 kg U = 2,6 lbs U₃O₈ |
| 1 t U = 2600 lbs U₃O₈ |
| 1 t U = 1,3 short tons U₃O₈ |
| 1 t U = 1,179 t U₃O₈ |
| 1 t U = 1,479 t UF₆ |
| 1 t U = 1,134 t UO₂ |

Tab. 33: Masse

1 Feinunze	31,1034768 g
1 oz	28,34953 g
1 lb	0,45359 kg
1 short ton	0,907185 t

| 1 kg = 32,1507466 Feinunze |
| 1 kg = 35,27395 oz |
| 1 kg = 2,2046 lbs |
| 1 t = 1,1023 short tons |

Tab. 34: Energie

1 TJ	2,388 × 10⁻⁵
1 Gcal	0,2778
1 Mtoe	947,8
1 MBtu	3,968
1 GWh	1,163 × 10⁻³

1 TJ =	238,8
1 Gcal =	4,1868 × 10⁻³
1 Mtoe =	1
1 MBtu =	10³
1 GWh =	3,6

1 TJ	2,388 × 10⁻⁵
1 Gcal	0,2778
1 Mtoe	947,8
1 MBtu	3,968
1 GWh	1,163 × 10⁻³

1 TJ =	238,8
1 Gcal =	4,1868 × 10⁻³
1 Mtoe =	1
1 MBtu =	10³
1 GWh =	3,6

Tab. 35: Dezimale Vervielfacher

<table>
<thead>
<tr>
<th>k</th>
<th>M</th>
<th>G</th>
<th>T</th>
<th>P</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilo</td>
<td>Mega</td>
<td>Giga</td>
<td>Tera</td>
<td>Peta</td>
<td>Exa</td>
</tr>
<tr>
<td>10⁻³</td>
<td>10⁶</td>
<td>10⁹</td>
<td>10¹²</td>
<td>10¹⁵</td>
<td>10¹⁸</td>
</tr>
</tbody>
</table>
G. Literatur

[atw] atw – Internationale Zeitschrift für Kernenergie, Bonn

[CISAC 2005] Preventing Nuclear Proliferation and Nuclear Terrorism: Essential steps to reduce the availability of nuclear-explosive materials; Center for International Security and Cooperation, Stanford Institute for International Studies, Stanford University, and Program on Science and Global Security, Woodrow Wilson School of Public and International Affairs, Princeton University, March 2005
http://cisac.stanford.edu/publications/20855/

[Diehl 2004] Re-enrichment of West European Depleted Uranium Tails in Russia, by Peter Diehl, Nov. 2004

[DOE EIA 2001] Nuclear and Uranium Forecasts
http://www.eia.doe.gov/cneaf/nuclear/page/forecast/foresum.html
http://www.eia.doe.gov/cneaf/nuclear/umar/umar.html

http://www.eia.doe.gov/cneaf/nuclear/dupr/dupr.html

http://www.ne.doe.gov/pdf/finalea.pdf

http://europa.eu.int/comm/euratom/

[HSE 2004] Urenco (Capenhurst) Ltd's strategy for decommissioning its nuclear licensed site, A review by HM Nuclear Installations Inspectorate, The Health and Safety Executive, Bootle, Merseyside, UK, November 2004

[IEA HP] OECD International Energy Agency homepage
http://www.iea.org/

http://www.nea.fr/html/ndd/reports/efc/

http://www.nea.fr/

http://www.nea.fr/

http://www.nea.fr/

[NF] Nuclear Fuel, New York

http://www.nrcan.gc.ca/mms/cmy/com_e.html

(NW) Nucleonics Week, New York

[UI 1999a] Uranium Imports to the USA from CIS Countries, UI Trade Briefing, Issue 1, August 1999
http://www.world-nuclear.org/trade_issues/

[UI 1999b] The US-Russia HEU Agreement, UI Trade Briefing, Issue 1, August 1999
http://www.world-nuclear.org/trade_issues/

http://www.world-nuclear.org/trade_issues/

http://www.world-nuclear.org/trade_issues/

[WMC HP] WMC homepage
http://www.wmc.com/

[WNA HP] World Nuclear Association homepage
http://www.world-nuclear.org/

[WUP HP] WISE Uranium Project homepage
http://www.wise-uranium.org

Rev. 04/2006